Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

CALCULATION OF THE FLOW FIELD NEAR THE ABSORBING SURFACE USING THE KINETIC-HYDRODYNAMIC MODEL AND INCREASING ITS COMPUTATIONAL EFFICIENCY

https://doi.org/10.18384/2310-7251-2021-4-96-111

Abstract

Aim of the work is to develop a physical and mathematical model that combines the kinetic and hydrodynamic description of the flow, and to increase its computational efficiency. Methodology. An analytical research method was used in the work. To study the properties of the resulting model, the method of a numerical experiment was used. Results. The calculation results show that the combined kinetic-hydrodynamic model (KHM) makes it possible to physically adequately describe the processes occurring in the transition region of the gas medium flow. There are no discontinuities in the derivatives of the gas parameters in the region where the model components are stitched together. The KHM model allows setting boundary conditions on absorbing surfaces. The values of such an integral characteristic as cx(α), calculated by the KGM, are in satisfactory agreement with the results of calculations by the model kinetic equation. Research implications. When calculating relatively dense gases (Kn = 0,01), the model allows to reduce the memory consumption of the computing device by about three orders of magnitude and the processor time by two orders of magnitude compared to the model kinetic equation. The developed model can be used in a wide range of Knudsen numbers.

About the Authors

Y. A. Nikitchenko
Moscow Aviation Institute (National Research University)
Russian Federation


A. V. Tikhonovets
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Salbreux G., Jülicher F. Mechanics of active surfaces // Physical Review E. 2017. Vol. 96. Iss. 3. P. 032404. DOI: 10.1103/PhysRevE.96.032404.

2. Rioux R. W. The Rate of Fluid Absorption in Porous Media // Electronic Theses and Dissertations. 2003. Vol. 234. URL: https://digitalcommons.library.umaine.edu/etd/234 (дата обращения: 06.09.2021).

3. Никитченко Ю. А., Попов С. А., Тихоновец А. В. Комбинированная кинетико-гидродинамическая модель течения многоатомного газа // Математическое моделирование. 2019. Т. 31. № 2. С. 18-32. DOI: 10.1134/S0234087919020023.

4. Nikitchenko Y., Popov S., Tikhonovets A. Special Aspects of Hybrid Kinetic-Hydrodynamic Model When Describing the Shape of Shockwaves // Computational Science - ICCS 2019 (19th International Conference, Faro, Portugal, June 12-14, 2019). Proceedings, Part IV / eds. Rodrigues J. et al. Switzerland: Springer, Cham, 2019. P. 425-434 (Series: Lecture Notes in Computer Science. Vol. 11539). DOI: 10.1007/978-3-030-22747-0_32.

5. О коэффициенте лобового сопротивления сорбирующей пластины, установленной поперек потока / Глинкина В. С., Никитченко Ю. А., Попов С. А., Рыжов Ю. А. // Известия РАН. Механика жидкости и газа. 2016. № 6. С. 78-85. DOI: 10.7868/S0568528116060050.

6. Никитченко Ю. А. Модельное кинетическое уравнение многоатомных газов // Журнал вычислительной математики и математической физики, 2017. Т. 57. № 11. С. 1882-1884. DOI: 10.7868/S0044466917110114.

7. Thompson M. J. An Introduction to Astrophysical Fluid Dynamics. London: Imperial College Press, 2006. 240 p.

8. Rovenskaya O. I., Croce G. Numerical simulation of gas flow in rough micro channels: hybrid kinetic-continuum approach versus Navier-Stokes // Microfluidics and Nanofluidics. 2016. Vol. 20. P. 81. DOI: 10.1007/s10404-016-1746-x.

9. Аэрогидромеханика / Бондарев Е. Н., Дубасов В. Т., Рыжов Ю. А., Свирщевский С. Б., Семенчиков Н. В. М.: Машиностроение, 1993. 608 с.

10. Тихоновец А. В. Разработка комбинированной физико-математической модели для описания течений высокой динамической неравновесности: дис. … канд. физ.-мат. наук. М., 2020. 108 с.


Review

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)