Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ANISOTROPY OF DIELECTRIC PERMITTIVITY IN 1-(4-HEXYLCYCLOHEXYL)-4-ISOTHIOCYANATOBENZENE

https://doi.org/10.18384/2310-7251-2019-1-83-96

Abstract

Dielectric properties of the 6CHBT nematic liquid crystal with a polar -NCS end group are studied. The principal values of the dielectric permittivity are determined using the methods of dielectric spectroscopy by varying the sample temperature, the angle between the director and electric field strength vector, and the frequency of the test signal. We use a modified dielectric spectroscopy method that takes into account the parasitic contributions of the measuring system. The characteristic dielectric relaxation times τ of rotation of 6CHBT molecules around their short axis in both the nematic and isotropic phases and the corresponding activation enthalpies are calculated. The temperature dependence of the orientational order parameter over the entire range of the nematic phase existence is constructed using the obtained data and the Maier-Saupe theory.

About the Authors

A. D. Kurilov
Moscow Region State University; MIREA - Russian Technological University
Russian Federation


N. I. Volosnikova
Moscow Region State University
Russian Federation


References

1. Highly birefringent, low-loss liquid crystals for terahertz applications / Reuter M., Vieweg N., Fischer B. M., Mikulicz M., Koch M., Garbat K., Dąbrowski R. // APL Materials. 2013. Vol. 1. Iss. 1. P. 012107.

2. The design of liquid crystalline bistolane-based materials with extremely high birefringence / Arakawa Y., Kang S., Tsuji H., Watanabe J., Konishi G. I. // RSC Advances. 2016. Vol. 6. Iss. 95. P. 92845-92851.

3. Dielectric Properties of Compounds Creating Dual-Frequency Nematic Liquid Crystals / Mrukiewicz M., Perkowski P., Garbat K., Dąbrowski R., Parka J. // Acta Physica Polonica A. 2013. Vol. 124. No. 6. P. 940-945.

4. Dąbrowski R., Kula P., Herman J. High birefringence liquid crystals // Crystals. 2013. Vol. 3. Iss. 3. P. 443-482.

5. New fluorinated terphenyl isothiocyanate liquid crystal single compounds and mixtures / Parish A., Gauza S., Wu S. T., Dziaduszek J., Dąbrowski R. // Molecular Crystals and Liquid Crystals. 2008. Vol. 489. Iss. 1. P. 22-39.

6. Lee J. H., Liu D. N., Wu S. T. Introduction to flat panel displays. UK: John Wiley & Sons Ltd, 2008. 280 p.

7. Amide as Terminal Groups: Synthesis and Properties as New Tolane-Type Liquid Crystals / Zhang H., Hong F., Zhu D., Xia Z., Wu H., Wang H., Zeng Z. // Chinese Journal of Chemistry. 2015. Vol. 33. Iss. 7. P. 771-776.

8. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups / Guan X. L., Zhang L. Y., Zhang Z. L., Shen Z., Chen X. F., Fan X. H., Zhou Q. F. // Tetrahedron. 2009. Vol. 65. Iss. 18. P. 3728-3732.

9. Low viscosity, high birefringence liquid crystalline compounds and mixtures / Dąbrowski R., Dziaduszek J., Ziółek A., Stolarz Z., Sasnouski G., Bezborodov V., Lapanik W., Gauza S., Wu S. // Opto-Electronics Review. 2007. Vol. 15. Iss. 1. P. 47-51.

10. Wen C. H., Gauza S., Wu S. T. Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups // Liquid Crystals. 2004. Vol. 31. Iss. 11. P. 1479-1485.

11. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds / Peng Z., Wang Q., Liu Y., Mu Q., Cao Z., Xu H., Zhang P., Yang C., Yao L., Xuan L., Zhang Z. // Liquid Crystals. 2016. Vol. 43. Iss. 2. P. 276-284.

12. Catanescu C. O., Wu S. T., Chien L. C. Tailoring the physical properties of some high birefringence isothiocyanato-based liquid crystals // Liquid Crystals. 2004. Vol. 31. Iss. 4. P. 541-555.

13. Interaction potential in nematogenic 6CHBT / Bogoslovov R. B., Roland C. M., Czub J., Urban S. // The Journal of Physical Chemistry B. 2008. Vol. 112. Iss. 50. P. 16008-16011.

14. Barsoukov E., Macdonald J. R. Impedance spectroscopy: Theory, Experiment, and Applications. Hoboken: Wiley, 2018. 528 p.

15. Raju G. G. Dielectrics in electric fields: Tables, Atoms, and Molecules; second edition. Boca Raton: CRC Press, 2016. 751 p.

16. Parameters of LC molecule’s movement measured by dielectric spectroscopy in wide temperature range / Chausov D. N., Kurilov A. D., Belyaev V. V., Kumar S. // Opto-Electronics Review. 2018. Vol. 26. Iss. 1. P. 44-49.

17. Electrode polarization in dielectric measurements: a review / Ishai P. B., Talary M. S., Caduff A., Levy E., Feldman Y. // Measurement Science and Technology. 2013. Vol. 24. No. 10. P. 102001.

18. Perkowski P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements // Opto-Electronics Review. 2012. Vol. 20. Iss. 1. P. 79-86.

19. Ahmed Z., Welch C., Mehl G. H. The design and investigation of the self-assembly of dimers with two nematic phases // RSC Advances. 2015. Vol. 5. Iss. 113. P. 93513-93521.

20. Garrappa R., Mainardi F., Guido M. Models of dielectric relaxation based on completely monotone functions // Fractional Calculus and Applied Analysis. 2016. Vol. 19. No. 5. P. 1105-1160.

21. Kalmykov Y. P., Coffey W. T. Analytical solutions for rotational diffusion in the mean field potential: application to the theory of dielectric relaxation in nematic liquid crystals // Liquid Crystals. 1998. Vol. 25. Iss. 3. P. 329-339.

22. Nematic order parameter as determined from dielectric relaxation data and other methods / Urban S., Gestblom B., Kuczyński W., Pawlus S., Wьrflinger A. // Physical Chemistry Chemical Physics. 2003. Iss. 5. P. 924-928.

23. Anchoring energy of liquid crystals / Dadivanyan A. K., Pashinina Y. M., Belyaev V. V., Chausov D. N., Noah O. V., Chigrinov V. G. // Molecular Crystals and Liquid Crystals. 2012. Vol. 560. Iss. 1. P. 108-114.

24. Моделирование ориентации молекул жидкокристаллического октилцианбифенила на поверхности кристаллов / Дадиванян А. К., Чаусов Д. Н., Пашинина Ю. М., Беляев В. В. // Жидкие кристаллы и их практическое использование. 2010. № 4 (34). С. 61-69.

25. Nanomesh aluminum films for LC alignment. Theoretical and experimental modeling / Dadivanyan A. K., Belyaev V. V., Chausov D. N., Stepanov A. A., Smirnov A. G., Tsybin A. G., Osipov M. A. // Molecular Crystals and Liquid Crystals. 2015. Vol. 611. Iss. 1. P. 117-122.

26. Molecules Orientation on Crystal Surfaces / Dadivanyan A. K., Pashinina Y. M., Chausov D. N., Belyaev V. V. Mesogen // Molecular Crystals and Liquid Crystals. 2011. Vol. 545. Iss. 1. P. 159-167.

27. Schadt M. Nematic liquid crystals and twisted-nematic LCDs // Liquid Crystals. 2015. Vol. 42. Iss. 5-6. P. 646-652.

28. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells / Bubnov A., Iwan A., Cigl M., Boharewicz B., Tazbir I., Wуjcik K., Sikora A., Hamplovб V. // RSC Advances. 2016. Vol. 6. Iss. 14. P. 11577-11590.

29. Srivastava A. K., Chigrinov V. G., Kwok H. S. Ferroelectric liquid crystals: Excellent tool for modern displays and photonics // Journal of the Society for Information Display. 2015. Vol. 23. Iss. 6. P. 253-272.

30. Программно-аппаратный комплекс оценки эффективности деятельности операторов / Чаусов Д. Н., Петухов И. В., Беляев В. В., Богачев А. К., Курасов П. А. // Вестник Московского государственного областного университета. Серия: Физика-Математика. 2014. № 2. С. 80-86.


Review

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)