Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

IMPROVING CHARACTERISTICS OF ZINC OXIDE TRANSPARENT ELECTRODES

https://doi.org/10.18384/2310-7251-2019-1-74-82

Abstract

The influence of the composition of the reagent flow on the formation conditions and the structure of ZnO-based layers is studied. It is shown that a key reserve in increasing the electrical conductivity and mobility of charge carriers of Ga-doped ZnO transparent electrodes is to increase the structural perfection of the layers. Analysis of the obtained results shows that an increase in the partial pressure of metal vapors in the gas phase entails a corresponding increase in the mobility of the components and an increase in the crystalline perfection of the synthesized polycrystalline layers.

About the Authors

A. Kh. Abduev
Institute of Physics of the Dagestan Science Center of the Russian Academy of Sciences
Russian Federation


A. Sh. Asvarov
Institute of Physics of the Dagestan Science Center of the Russian Academy of Sciences
Russian Federation


A. K. Ahmedov
Institute of Physics of the Dagestan Science Center of the Russian Academy of Sciences
Russian Federation


V. V. Belyaev
Moscow Region State University; RUDN University
Russian Federation


A. Y. Skvortsov
Moscow Region State University
Russian Federation


D. S. Plentsova
Moscow Region State University
Russian Federation


References

1. Flexible Electronics: Materials and Applications / W. S. Wong, A. Salleo, eds. US: Springer, P. 473-442.

2. Mochel J. M. Electrically conducting coating on glass and other ceramic bodies / Patent USA 2564987A. Printed 08.21.1951.

3. Minami T. New n-type transparent conducting oxides // MRS Bulletin. 2000. Vol. 25. Iss. 8. P. 38-44.

4. Ren W., Cheng H.-M. The global growth of graphene // Nature Nanotechnology. 2014. Vol. 9. P. 726-730.

5. The Potential of Graphene as an ITO Replacement in Organic Solar Cells: An Optical Perspective / Koh W. S., Gan C. H., Phua W. K., Akimov Y. A., Bai P. // IEEE Journal of Selected Topics in Quantum Electronics. 2014. Vol. 20. Iss. 1. P. 36-42.

6. Transparent Conductive Films (TCF) Market Research Report [Электронный ресурс] // IndustryARC : [сайт]. https://industryarc.com/Report/16335/transparent-conductive-films-market.html?gclid=EAIaIQobChMI4I7h7on44AIVBs yCh3paQBfEAAYAiAAEgI8w_D_BwE (дата обращения: 15.12.2018).

7. Ellmer K. Resistivity of polycrystalline zinc oxide films: current status and physical limit // Journal of Physics D: Applied Physics. 2001. Vol. 34. No. 21. P. 3097-3108.

8. Microstructural evolution during film growth / Petrov I., Barna P. B., Hultman L., Greene J. E. // Journal of Vacuum Science and Technology A. 2003. Vol. 21. Iss. 5. P. 117.

9. ZnO layers growth mechanism / Abduev A. Kh., Asvarov A. Sh., Achmedov A. K., Kamilov I. K., Suljanov S. N. // NATO Science Series II: Mathematics, Physics and Chemistry. 2005. Vol. 194. P. 15.

10. Процессы газофазной кластеризации при магнетронном распылении цинка / Абдуев А. Х., Ахмедов А. К., Асваров А. Ш., Алиханов Н. М., Эмиров Р. М., Муслимов А. Э., Беляев В. В. // Кристаллография. 2017. Т. 62. № 1. С. 130-136.


Review

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)