Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ON SOME PROPERTIES OF PROJECTIVE FLAT MANIFOLDS WITH AFFINE CONNECTION

https://doi.org/10.18384/2310-7251-2021-1-6-16

Abstract

Aim. We refine the properties of parallel translations of manifolds with affine connection of dimension greater than two, such that for any three points that are sufficiently close, there exists a two-dimensional autoparallel manifold containing them. Methodology. We use the methods of differentiable universal algebras to describe the properties of certain classes of affine-connected spaces. Results. We prove that in this class of projective flat manifolds with affine connection, the “pseudoline” identity is fulfilled, reflecting the properties of parallel translations. The differential-geometric characteristic of a “pseudoline” identity is derived, that is, if the dimension of the manifold is more than two, then the “pseudoline” identity is equivalent to the fact that the corresponding manifolds of affine connection are projective flat and have a common pseudoconnection (the same concurrency) with the manifold of affine connection with zero torsion. Research implications. Differential geometry has numerous applications in theoretical mechanics, Special and General relativity theory, and other fields of natural sciences. This research can be employed to build a specific mathematical model describing the course of physical processes.

About the Authors

O. A. Matveyev
Moscow Region State University
Russian Federation


T. A. Marchenko
Moscow Region State University
Russian Federation


O. S. Melnik
Moscow Region State University
Russian Federation


References

1. Марченко Т. А., Матвеев О. А., Птицына И. В. Локальная проективно плоская модель сферы // Вестник Московского государственного областного университета. Серия: Физика-математика. 2017. № 4. С. 6-13. DOI: 10.18384/2310-7251-2017-4-6-13.

2. Матвеев О. А., Марченко Т. А. О преобразовании голономии в пространствах аффинной связности [Электронный ресурс] // Актуальные проблемы математики, физики и математического образования: сборник трудов кафедры математического анализа и геометрии. М.: ИИУ МГОУ, 2019. C. 56-58. 1 электрон. опт. диск (CD-ROM).

3. Матвеев О. А., Мельник О. С., Марченко Т. А. К алгебраической теории геодезических отображений многообразий аффинной связности [Электронный ресурс] // Актуальные проблемы математики, физики и математического образования: сборник трудов кафедры математического анализа и геометрии. Вып. 3: Научные исследования в начале III тысячелетия. М.: ИИУ МГОУ, 2020. С. 17-28. 1 электрон. опт. диск (CD-ROM).

4. Матвеев О. А., Нестеренко Е. Л. Алгебраическая теория пространств, близких к симметрическим: монография. Germany: Lap Lambert Academic Publishing, 2012. 125 с.

5. Матвеев О. А., Нестеренко Е. Л. Универсальные алгебры в теории пространств аффинной связности, близких к симметрическим: монография. М.: МГОУ, 2012. 132 с.

6. Matveyev O. A., Nesterenko E. L. The real prosymmetric spaces // Non-Associative Algebra and Its Applications / edited by L. Sabinin, L. Sbitneva, I. Shestakov. Boca Raton, London, New York: Taylor and Francis Group, Chapman and Hall/CRC, 2006. P. 253-260 (A Series of Lecture Notes in Pure and Applied Mathematics. Vol. 246).

7. Sabinin L. Loop-theoretic foundations of Differential Geometry and Relativity. // Webs and Quasigroups. Tver: Tver University Press, 2002. P. 67-72 (English).

8. Non-Associative Algebra and Its Applications / edited by L. Sabinin, L. Sbitneva, I. Shestakov. Boca Raton, London, New York: Taylor and Francis Group, Chapman and Hall/CRC, 2006. 516 p. (A Series of Lecture Notes in Pure and Applied Mathematics. Vol. 246).


Review

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)