Microscopical theory of non-linear thermodifusion-phoresis taking into account quantum corrections, critical fluctuations, and anomalous transport
https://doi.org/10.18384/2949-5067-2025-3-19-35
Abstract
Aim. Development of a microscopic theory of nonlinear thermodiffusophoresis that combines quantum corrections, critical fluctuations, and anomalous transport regimes for systems with strong temperature gradients.
Methodology. Methods of nonequilibrium statistical mechanics (nonequilibrium statistical operator), renormalization group analysis for critical phenomena, and fractional calculus for describing anomalous transport are used.
Results. Within the framework of the developed theory, generalized transport equations are derived, including a non-local memory kernel K (r, t; T), which explicitly depends on the temperature. Anomalous behavior of the thermodiffusion coefficient near the critical point is established, described by the scaling π·T~|π β πcπ|-πΎ with an effective exponent πΎ = 1,24 + 0,17 where the addition of 0,17 is due to hydrodynamic interactions. Regimes of anomalous transport with fractional exponents are discovered and classified, where the root-mean-square displacement of particles follows the law β¨βπ2β©~π‘Ξ± with the exponent Ξ± that smoothly varies from 0,7 (subdiffusion) to 1.5 (superdiffusion) depending on the magnitude of the temperature gradient. For nanoscale systems at low temperatures, we have obtained explicit expressions for quantum corrections to the system's Hamiltonian that account for tunneling effects and the nonlocality of the temperature field.
Research implications include creating a fundamental basis for the design of microfluidic devices, nanoparticle control in biomedicine, and the development of new materials with thermally controlled properties.
About the Authors
O. E. DorokhovaRussian Federation
Olga E. Dorokhova β Cand. Sci. (Education), Assoc. Prof., Department of Physics and Mathematics
Moscow
V. I. Parenkina
Russian Federation
Viktoriya I. Parenkina β Senior Lecturer, Department of Physics and Mathematics
Moscow
N. I. Uvarova
Russian Federation
Nataliya I. Uvarova β Lecturer, Department of Physics and Mathematics
Moscow
O. V. Khongorova
Russian Federation
Olga V. Khongorova β Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Physics and Mathematics
Moscow
References
1. Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. In: Physical Review, 37, 405β426. DOI: 10.1103/PhysRev.37.405.
2. Derjaguin, B. V. & Yalamov, Yu. I. (1965). Theory of thermophoresis of large aerosol particles. In: Journal of Colloid Science, 20 (6), 555β570. DOI: 10.1016/0095-3.8522(65)90005-6.
3. Onsager, L. (1949). The Effects of Shape on the Interaction of Colloidal Particles. In: Annals of the New York Academy of Sciences, 51 (4), 627β659. DOI: 10.1111/j.1749-6632.1949.tb27296.x.
4. Derjaguin, B. V. (1954). A Theory of the Heterocoagulation, Interaction and Adhesion of Dissimilar Particles in Solutions of Electrolytes. In: Discussions of the Faraday Society, 18, 85β98. DOI: 10.1039/DF9541800085.
5. De Groot, S. R. & Mazur, P. (1962). Non-Equilibrium Thermodynamics. Amsterdam: North-Holland.
6. Risken, H. (1989). The Fokker-Planck Equation: Methods of Solution and Applications. Berlin: Springer. DOI: 10.1007/978-3-642-61544-3.
7. Braibanti, M., Vigolo, D. & Piazza, R. (2008). Does Thermophoretic Mobility Depend on Particle Size? In: Physical Review Letters, 100, 108303. DOI: 10.1103/PhysRevLett.100.108303.
8. Vigolo, D., Rusconi, R. Stone, H. A. & Piazza, R. (2010). Thermophoresis: Microfluidics Characterization and Separation. In: Soft Matter, 6, 3489β3493. DOI: 10.1039/c002057e.
9. Jiang, H.-R., Wada, H., Yoshinaga, N. & Sano, M. (2009). Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient. In: Physical Review Letters, 102, 208301. DOI: 10.1103/PhysRevLett.102.208301.
10. Duhr, S. & Braun, D. (2006). Why Molecules Move Along a Temperature Gradient. In: Proceedings of the National Academy of Sciences, 103 (52), 19678β19682. DOI: 10.1073/pnas.0603873103.
11. WΓΌrger, A. (2010). Thermal Non-Equilibrium Transport in Colloids. In: Reports on Progress in Physics, 73 (12), 126601. DOI: 10.1088/0034-4885/73/12/126601.
12. Piazza, R. & Parola, A. (2008). Thermophoresis in Colloidal Suspensions. In: Journal of Physics: Condensed Matter, 20 (15), 153102. DOI: 10.1088/0953-8984/20/15/153102.
13. Giddings, J. C., Shinudu, P. M. & Semenov, S. N. (1995). Thermophoresis of Metal Particles in a Liquid. In: Journal of Colloid and Interface Science, 176 (2), 454β458. DOI: 10.1006/jcis.1995.9946.
14. Zubarev, D. N. (1974). Non-Equilibrium Statistical Thermodynamics. New York: Consultants Bureau.
15. Wilson, K. G. (1983). The Renormalization Group and Critical Phenomena. In: Reviews of Modern Physics, 55, 583β600. DOI: 10.1103/RevModPhys.55.583.
16. Metzler, R. & Klafter, J. (2000). The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach. In: Physics Reports, 339 (1), 1β77. DOI: 10.1016/S0370-1573(00)00070-3.
17. Celani, A., Bo, S., Eichhorn, R. & Aurell, E. (2012). Anomalous Thermodynamics at the Microscale. In: Physical Review Letters, 109 (26), 260603. DOI: 10.1103/PhysRevLett.109.260603.
18. Bustamante, C., Liphardt, J. & Ritort, F. (2005). The Nonequilibrium Thermodynamics of Small Systems. In: Physics Today, 58 (7), 43β48. DOI: 10.1063/1.2012462.


























