Simulation of atomic block (001) Ni for ion sputtering problems: relaxation and main parameters
https://doi.org/10.18384/2949-5067-2025-2-27-46
Abstract
Aim is to create a molecular dynamics model of the (001) Ni atomic block that can be used to study sputtering.
Methodology. The molecular dynamics method, the Box-Muller method to generate random numbers from normal distribution, the embedded atom method, the Fletcher-Reeves conjugate gradient method, the parabola approximation and the golden section methods to find the minimum of a function, and the Velocity Verlet method are used.
Results. A program for molecular dynamics modeling with preliminary relaxation of the atomic block has been created. The lattice constant and surface binding energy were calculated for blocks of different sizes. The correctness of the model has been shown.
Research implications. The results can be used by other researchers in developing similar models. In addition, the model created in the work will be used in practice in our future works to study the ejection of atoms during sputtering from the (001) Ni face.
Keywords
About the Author
A. I. MusinMoscow State University of Technology “STANKIN”; Vyatka State University
Russian Federation
Artem I. Musin – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Physics; Assoc. Prof., Department of Physics and Teaching Physics
Moscow
Kirov
References
1. Lockyer, N. P., Aoyagi, S., Fletcher, J. S., Gilmore, I. S., van der Heide, P. A. W., Moore, K. L., Tyler, B. J. & Weng, L.-T. (2024). Secondary ion mass spectrometry. In: Nature Reviews Methods Primers, 4 (1), article no. 32. DOI: 10.1038/s43586-024-00311-9.
2. Kireev, D. S., Minnebaev, K. F., Kiselevskiy, V. A. & Ieshkin, A. E. (2024). Modification of the Surface Topography of Additive Materials under Ar+ Ion Irradiation. In: Moscow University Physics Bulletin, 79 (4), p. 2440501. DOI: 10.55959/MSU0579-9392.79.2440501 (in Russ.).
3. Mikhailenko, M. S., Pestov, A. E., Zorina, M. V., Chernyshev, A. K., Chkhalo, N. I. & Shevchuk, I. E. (2023). Study of the influence of ion-beam etching on the surface roughness of single-crystal sapphire. In: Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 12, 25–30. DOI: 10.31857/S1028096023120154 (in Russ.).
4. Kostishin, V. G., Mironovich, A. Y., Timofeev, A. V., Isaev, I. M., Shakirzyanov, R. I., Ril, A. I. & Sergienko, A. A. (2021). Structural features of textured zinc-oxide films obtained by the ion-beam sputtering method. In: Semiconductors, 55 (3), 230–236. DOI: 10.21883/FTP.2021.03.50600.9542 (in Russ.).
5. Arslan, Ö., Hocuk, S., Caselli, P. & Küçük, I. (2023). The cosmic-ray induced sputtering process on icy grains. In: Monthly Notices of the Royal Astronomical Society, 518 (2), 2050–2067. DOI: 10.1093/mnras/stac3196.
6. Shpinkov, V. I. & Samoilov, V. N. (2009). Focusing of Atoms Sputtered from (001)Ni Surface for Gaussian Distribution of Ejected Atoms. In: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 3, 73–79 (in Russ.).
7. Samoilov, V. N. & Nosov, N. V. (2014). Effects of the Azimuthal Angle Focusing of Atoms Ejected from (001) Ni and (001) Au. In: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 3, 81–92. DOI: 10.7868/S0207352814030202 (in Russ.).
8. Sigmund, P. (1969). Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. In: Physical Review, 184 (2), 383–416. DOI: 10.1103/PhysRev.184.383.
9. Sigmund, P. (1969). Errata. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. In: Physical Review, 187 (2), 768. DOI: 10.1103/PhysRev.187.768.
10. Musin, A. I. & Samoilov, V. N. (2024). On the shift of the maximum of the polar angular distribution of sputtered atoms in the md model of the (001) Ni face sputtering. In: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 6, 31–37. DOI: 10.31857/S1028096024060048 (in Russ.).
11. Musin, A. I. & Samoilov, V. N. (2025). On the features of the formation of polar distribution of sputtered atoms in the md model of the (001) Ni face sputtering. In: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 3, 17–22. DOI: 10.31857/S1028096025030039 (in Russ.).
12. Kornich, G. V. & Betz, G. (1998). MD simulation of atomic displacements in pure metals and metallic bilayers during low energy ion bombardment at 0 K. In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 143 (4), 455–472. DOI: 10.1016/S0168-583X(98)00410-8.
13. Ackland, G. J., Tichy, G., Vitek, V. & Finnis, M. W. (1987). Simple N-body potentials for the noble metals and nickel. In: Philosophical Magazine A, 56 (6), 735–756. DOI: 01418618708204485.
14. Voevodin ,Vl. V., Antonov, A. S., Nikitenko, D. A., Shvets, P. A., Sobolev, S. I., Sidorov, I. Yu., Stefanov, K. S., Voevodin, Vad. V. & Zhumatiy, S. A. (2019). Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. In: Supercomputing Frontiers and Innovations, 6 (2), 4–11. DOI: 10.14529/jsfi190201.
15. Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: Visual molecular dynamics. In: Journal of Molecular Graphics, 14 (1), 33–38. DOI: 10.1016/0263-7855(96)00018-5.
16. Zhou, X. W., Johnson, R. A. & Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. In: Physical Review B, 69 (14), article no. 144113. DOI: 10.1103/PhysRevB.69.144113.
17. Ziegler, J. F., Biersack, J. P. & Littmark, U. (1983). Empirical stopping powers for ions in solids. In: Charge states and dynamic screening of swift ions in solids: Proceedings of the U. S. – Japan Seminar on Charged-Particle Penetration Phenomena (January, 25–29, East-West Center, Honolulu, Hawaii). Oak Ridge, TN (USA): Oak Ridge National Lab., pp. 88–100.
18. Fletcher, R. & Reeves, C. M. (1964). Function minimization by conjugate gradients. In: The Computer Journal, 7 (2), 149–154. DOI: 10.1093/comjnl/7.2.149.
19. Jackson, D. P. (1973). Binding energies in cubic metal surfaces. In: Radiation Effects, 18 (3-4), 185–189. DOI: 10.1080/00337577308232120.
20. Harrison, D. E., Gay, W. L. & Effron H. M. (1969). Algorithm for the calculation of the classical equations of motion of an N-body system. In: Journal of Mathematical Physics, 10 (7), 1179–1184. DOI: 10.1063/1.1664955.