Registration of asparaginase single molecule activity using a nanopore detector
https://doi.org/10.18384/2949-5067-2024-1-20-32
Abstract
Aim. The possibility of using a nanopore to monitor the functioning of asparaginase has been studied.
Methodology. In this work, a SiN-based nanopore was constructed in which the L-asparaginase molecule was embedded. The catalytic activity of the L-asparaginase molecule, embedded in the nanopore, has been monitored by observing the change in the ion current in the cell with this nanopore. This approach is useful for studying the catalytic activity based on single enzyme molecules embedded in a nanopore.
Results. A nanopore detector for studying the catalytic activity of L-asparaginase has been developed. It has been found that this detector made it possible to monitor the activity of this enzyme.
Research implications. It has been shown that a nanopore detector, with a nanopore size of the order of 6 nm, can be used to study the activity of asparaginase. It is possible to carry out realtime monitoring of changes in the form of L-asparaginase, which consisted in monitoring changes in the ion current passing through a nanopore, in which asparaginase was immobilized. The results obtained can be of use in the analysis of the functioning of enzymes at the level of single molecules.
About the Authors
Yu. IvanovRussian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121; ulitsa Izhorskaya 13, Moscow 125412
A. Ableev
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
V. Shumyantseva
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
D. Zhdanov
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
M. Pokrovskaya
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
S. Aleksandrova
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
I. Ivanova
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
A. Vinogradova
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
E. Nevedrova
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
V. Ziborov
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121; ulitsa Izhorskaya 13, Moscow 125412
N. Vaulin
Russian Federation
ulitsa Khlopina 8 build. 3 letter A, St. Petersburg 194021
D. Lebedev
Russian Federation
ulitsa Khlopina 8 build. 3 letter A, St. Petersburg 194021
A. Bukatin
Russian Federation
ulitsa Khlopina 8 build. 3 letter A, St. Petersburg 194021
I. Mukhin
Russian Federation
ulitsa Khlopina 8 build. 3 letter A, St. Petersburg 194021
A. Archakov
Russian Federation
ulitsa Pogodinskaya 10 build. 8, Moscow 119121
References
1. Verma N., Kumar K., Kaur G., Anand S. L-asparaginase: a promising chemotherapeutic agent. In: Critical reviews in biotechnology, 2007, vol. 27, iss. 1, pp. 45–62. DOI: 10.1080/07388550601173926.
2. Whitecar J. P. Jr, Bodey G. P., Harris J. E., Freireich E. J. L-asparaginase. In: The New England Journal of Medicine, 1970, vol. 282, no. 13, pp. 732–734. DOI: 10.1056/NEJM197003262821307.
3. Kozak M., Jurga S. A comparison between the crystal and solution structures of Escherichia coli asparaginase II. In: Acta Biochimica Polonica, 2002, vol. 49, no. 2, pp. 509–513.
4. Swain A. L., Jaskólski M, Housset D, Rao J. K, Wlodawer A. Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. In: Proceedings of the National Academy of Sciences, 1993, vol. 90, no. 4, pp. 1474–1478. DOI: 10.1073/pnas.90.4.1474.
5. Palm G. J., Lubkowski J., Derst C., Schleper S., Röhm K. H., Wlodawer A. A covalently bound catalytic intermediate in Escherichia coli asparaginase: Crystal structure of a Thr‐89‐ Val mutant. In: FEBS Letters, 1996, vol. 390, no. 2, pp. 211–216. DOI: 10.1016/0014-5793(96)00660-6.
6. Illarionova I. G., Petrov L. I., Oleynikova L. V., Roshchin S. N., Pasechnik V. A., Khalyapin B. D., Polotskiy A. Ye., Voinova N. Ye., Shtukina T. B. [Study of the secondary structure of L-asparaginase in a wide range of pH values]. In: Molekulyarnaya Biologiya [Molecular Biology], 1980, vol. 14, no. 4, pp. 951–955.
7. Ivanov Yu. D. Bukharina N. S., Pleshakova T. O., Frantsuzov P. A., Krokhin N. V., Ziborov V. S., Archakov A. I. [Atomic force microscopy visualization and measurement of the activity and physicochemical properties of single monomeric and oligomeric enzymes]. In: Biofizika [Biophysics], 2011, vol. 56, no. 5, pp. 939–944.
8. Ivanov Yu. D., Bukharina N. S., Frantsuzov P. A., Pleshakova T. O., Munro A. V., Hui Bon Hoa G., Archakov A. I. [ASN nanotechnology for visualization, counting, determination of elasticity and activity of single proteins of cytochrome P 450-containing monooxygenase systems]. In: Nanotekhnologii i okhrana zdorov'ya [Nanotechnologies and health care], 2010, vol. 2, no. 1, pp. 30–35.
9. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. In: Science, 1994, vol. 265, no. 5178, pp. 1577– 1579. DOI: 10.1126/science.8079171.
10. Pham B., Eron S. J., Hill M. E., Li X., Fahie M. A., Hardy J. A., Chen M. A nanopore approach for analysis of caspase-7 activity in cell lysates. In: Biophysical Journal, 2019, vol. 117, no. 5, pp. 844–855. DOI: 10.1016/j.bpj.2019.07.045.
11. Wang L., Han Y., Zhou S., Guan X. Real-time label-free measurement of HIV-1 protease activity by nanopore analysis. In: Biosensors and Bioelectronics, 2014, vol. 62, pp. 158–162. DOI: 10.1016/j.bios.2014.06.041.
12. Zhou S., Wang L., Chen X, Guan X. Label-free nanopore single-molecule measurement of trypsin activity. In: ACS Sensors, 2016, vol. 1, no. 5, pp. 607–613. DOI: 10.1021/acssensors.6b00043.
13. Kukwikila M., Howorka S. Nanopore-based electrical and label-free sensing of enzyme activity in blood serum. In: Analytical Chemistry, 2015, vol. 87, no. 18, pp. 9149–9154. DOI: 10.1021/acs.analchem.5b01764.
14. Wendell D., Jing P., Geng J., Subramaniam V., Lee T. J., Montemagno C., Guo P. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. In: Nature Nanotechnology, 2009, vol. 4, no. 11, pp. 765–772. DOI: 10.1038/nnano.2009.259.
15. Soskine M., Biesemans A., Moeyaert B., Cheley S., Bayley H., Maglia G. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. In: Nano letters, 2012, vol. 12, no. 9, pp. 4895–4900. DOI: 10.1021/nl3024438.
16. Li J., Stein D., McMullan C., Branton D. Aziz M. J., Golovchenko J. A. Ion-beam sculpting at nanometre length scales. In: Nature, 2001, vol. 412, no. 6843, pp. 166–169. DOI: 10.1038/35084037.
17. Kwok H., Briggs K., Tabard-Cossa V. Nanopore fabrication by controlled dielectric breakdown. In: PLOS ONE, 2014, vol. 9, iss. 3, pp. e92880. DOI: 10.1371/journal.pone.0092880.
18. Waugh M., Briggs K., Gunn D., Gibeault M., King S., Ingram Q., Jimenez A. M., Berryman S., Lomovtsev D., Andrzejewski L., Tabard-Cossa V. Solid-state nanopore fabrication by automated controlled breakdown. In: Nature Protocols, 2020, vol. 15, no. 1, pp. 122–143. DOI: 10.1038/s41596-019-0255-2.
19. Nam S.-W., Rooks M. J., Kim K.-B., Rossnagel S. M. Ionic field effect transistors with sub10 nm multiple nanopores. In: Nano letters, 2009, vol. 9, no. 5, pp. 2044–2048. DOI: 10.1021/nl900309s.
20. Papageorgiou A. C., Posypanova G. A., Andersson C. S., Sokolov N. N., Krasotkina J. Structural and functional insights into Erwinia carotovora L-asparaginase. In: The FEBS Journal, 2008, vol. 275, iss. 17, pp. 4306–4316.