Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Temporal evolution of tunneling of bose-condensed atoms in a quadrupole trap under the condition of initial equipopulation of trap pits

https://doi.org/10.18384/2949-5067-2023-3-15-32

Abstract

   Aim of this work is to theoretically investigate the temporal evolution of Bose-condensed atoms in a quadrupole trap.

   Methodology. Theoretical studies of the interaction Hamiltonian describing the time evolution of Bose-condensed atoms in a quadrupole trap under linear tunneling conditions have been carried out.

   Results. Analytical solutions are obtained for a system of differential equations describing the time evolution of Bose-condensed atoms in a quadrupole trap.

   Research implications. The time evolution of Bose-condensed atoms in a quadrupole trap is determined by the initial phase difference, which makes it possible to phase-control the process of Bose-atom tunneling in traps.

About the Authors

O. Vasilieva
Pridnestrovian State University
Moldova, Republic of

Olga F. Vasilieva, Cand. Sci. (Phys.-Math.), Assoc. Prof.

Department of Quantum Radiophysics and Communication Systems

MD3300

8 ulitsa 25 Oktyabrya

Tiraspol



A. Zingan
Pridnestrovian State University
Moldova, Republic of

Anna P. Zingan, Cand. Sci. (Phys.-Math.), Assoc. Prof.

Department of Quantum Radiophysics and Communication Systems

MD3300

128 ulitsa 25 Oktyabrya

Tiraspol



References

1. Khadzhi P. I., Vasilieva O. V. Coherent dynamics of Bose-condensed atoms in a double-well trap. In: Journal of Nanoelectronics and Optoelectronics, 2011, vol. 6, no. 4, pp. 433–451. DOI: 10.1166/jno.2011.1194.

2. Jezek D. M., Capuzzi P., Cataldo H. M. Two-mode effective interaction in a double-well condensate. In: Physical Review A, 2013, vol. 87, iss. 5, pp. 053625. DOI: 10.1103/PhysRevA.87.053625.

3. Adriazola J., Goodman R. H., Kevrekidis P. G. Efficient manipulation of Bose-Einstein condensates in a double-well potential (2022). arXiv:2206.01858v2. In: arXiv.org: e-Print archive. Available at: https://arxiv.org/abs/2206.01858 (accessed: 12. 04. 2023).

4. Holthaus M. Towards coherent control of a Bose-Einstein in a double well. In: Physical Review A, 2001, vol. 64, iss. 1, pp. 011601(R).

5. Ma D., Jia C. Square wave oscillation of soliton in double-well potential trapped BEC (2019). arXiv:1903.00141. In: arXiv.org: e-Print archive. Available at: https://arxiv.org/abs/1903.00141 (accessed: 12. 04. 2023).

6. Saha A. K., Adhikary K., Mal S., Dastidar K.R., Deb B. The effects of trap-confinement and interatomic interaction on Josephson effects and macroscopic quantum self-trapping for a Bose-Einstein condensate. In: Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, vol. 52, no. 15, pp. 155301. DOI: 10.1088/1361-6455/ab2b58.

7. Dastidar K. R., Gupta M. Dynamics of dipolar atom-molecular BEC in a double well potential: effect of atom-molecular coherent coupling (2021). arXiv:2106.12274v1. In: arXiv.org: e-Print archive. Available at: https://arxiv.org/abs/2106.12274 (accessed: 12. 04. 2023).

8. Vasil'yeva O. F., Zingan A. P. [Temporary evolution of bose-condensed atoms in a three-well symmetric chain trap]. In: Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya: Fizika-Matematika [Bulletin of the Moscow Region State University. Series: Physics and Mathematics], 2021, no. 1, pp. 27–38. DOI: 10.18384/2310-7251-2021-1-27-38.

9. Vasil'yeva O. F., Zingan A. P. [Time evolution of Bose-condensed atoms in a three-well trap under the condition of a non-zero initial population of the first well]. In: Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya: Fizika-Matematika [Bulletin of the Moscow Region State University. Series: Physics and Mathematics], 2022, no. 2, pp. 28–41. DOI: 10.18384/2310-7251-2022-2-28-41.

10. Wang B., Zhang H., Chen Y., Tan L. Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system. In: The European Physical Journal D, 2017, vol. 71, pp. 56. DOI: 10.1140/epjd/e2017-70647-3.

11. Dey A., Cohen D., Vardi A. Adiabatic Passage through Chaos. In: Physical Review Letters, 2018, vol. 121, iss. 25, pp. 250405. DOI: 10.1103/PhysRevLett.121.250405.

12. Tonel A. P., Ymai L. H., Wittmann K., Foerster A., Links J. Entangled states of dipolar bosons generated in a triple-well potential. In: SciPost Physics Core, 2020, vol. 2, pp. 003. DOI: 10.21468/SciPostPhysCore.2.1.003.

13. Rubio J. L., Ahufinger V., Busch Th., Mompart J. Optimal conditions for spatial adiabatic passage of a Bose-Einstein condensate. In: Physical Review A, 2016, vol. 94, iss. 5, pp. 053606. DOI: 10.1103/PhysRevA.94.053606.

14. Stickney J. A., Anderson D. Z., Zozulya A. A. Transistor like behavior of a Bose-Einstein condensate in a triple-well potential. In: Physical Review A, 2007, vol. 75, iss. 1, pp. 013608. DOI: 10.1103/PhysRevA.75.013608.

15. Wilsmann K. W., Ymai L. H., Tonel A. P., Links J., Foerster A. Control of tunneling in an atomtronic switching device. In: Communications Physics, 2018, vol. 1, pp. 91. DOI: 10.1038/s42005-018-0089-1.

16. Schlagheck P., Malet F., Cremon J. C., Reimann S. M. Transport and interaction blockade of cold bosonic atoms in a triple-well potential. In: New Journal of Physics, 2010, vol. 12, pp. 065020. DOI: 10.1088/1367-2630/12/6/065020.

17. Karmakar S., Keshavamurthy S. Arnold web and dynamical tunneling in a four-site Bose-Hubbard model. In: Physica D: Nonlinear Phenomena, 2021, vol. 427, pp. 133006. DOI: 10.1016/j.physd.2021.133006.

18. Khripkov C., Vardi A., Coher D. Semiclassical theory of strong localization for quantum thermalization. In: Physical Review E, 2018, vol. 97, iss. 2, pp. 022127. DOI: 10.1103/PhysRevE.97.022127.

19. Javanainen J. Optical detection of the relative phase between two Bose-Einstein condensates. In: Physical Review A, 1996, vol. 54, iss. 6, pp. R4629. DOI: 10.1103/PhysRevA.54.R4629.

20. Kumar A., Dubessy R., Badr T., De Rossi C., De Goer M., Longchambon L., Perrin H. Producing superfluid circulation states using phase imprinting. In: Physical Review A, 2018, vol. 97, iss. 4, pp. 043615. DOI: 10.1103/PhysRevA.97.043615.


Review

Views: 95


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)