Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ALTERNATIVE CALCULATION OF COVARIANT DERIVATIVES WITH AN APPLICATION TO THE PROBLEMS OF MECHANICS, PHYSICS AND GEOMETRY

https://doi.org/10.18384/2310-7251-2019-1-16-45

Abstract

Based on a simple mathematical approach proposed in the paper, we demonstrate a rigorous computation of the Christoffel symbols and the Riemann tensor that obviously have a regular geometric dimension, which is extremely important in solving a huge class of purely physical problems. As examples, we consider four orthogonal coordinate systems, two of which are spherical and cylindrical, i.e. standard for describing any course of tensor analysis, and the other two are parabolic and orthogonal two-dimensional coordinate systems, for which the Christoffel symbols, the Laplace operator, and Riemann and Ricci, whose all components automatically have the correct geometric dimensions, are calculated. A number of physical applications of the described mathematical formalism are demonstrated. An example of a nonorthogonal two-dimensional coordinate system is considered, with the help of which a detailed calculation of the Christoffel symbols of both kinds is given, and an expression is found for the Laplace operator with application to the problems of elasticity theory and hydrodynamics.

About the Author

S. O. Gladkov
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Мак-Коннел А. Дж. Введение в тензорный анализ с приложениями к геометрии, механике и физике: пер. с англ. / под ред. Г. В. Коренева. М.: Физматлит, 1963. 411 с.

2. Ландау Л. Д., Лифшиц Е. М. Теория упругости. Т. 7. М.: Наука, 2004. 246 с.

3. Ландау Л. Д., Лифшиц Е. М. Механика. Т. 1. М.: Наука, 2001. 189 с.

4. Ландау Л. Д., Лифшиц Е. М. Теория поля. Т. 2. М.: Наука, 2002. 502 с.

5. Рашевский П. К. Риманова геометрия и тензорный анализ. М.: Наука, 1967. 664 с.

6. Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Т. 3. М.: Наука, 2004. 752 с.

7. Гладков С. О. К вопросу о линеаризации основного уравнения ОТО // Инженерная физика. 2017. Т. 19. № 10. С. 19-27.

8. Гладков С. О. К вопросу о взаимодействии полей разной физической природы // Инженерная физика. 2018. Т. 20. № 3. С. 17-31.

9. Gladkov S. O. To the question of a common field theory // Journal of Physics: Conference series. 2018. Vol. 1051: XX International Meeting “Physical Interpretations of Relativity Theory 2017”. P. 012029. REFERENCES

10. MacConnel A. J. Applications of Tensor Analysis. New York, Dover Publication, 2011. 352 p.

11. Landau L. D., Lifshits E. M. Theory of Elasticity, Course of Theoretical Physics, Vol. 7. London Elsevier, 2005.

12. Landau L. D., Lifshits E. M. Mechanics. Oxford, Pergamon Press, 2000. 170 p.

13. Landau L. D., Lifshits E. M. The Classical Theory of Fields, Course of Theoretical Physics, Vo. 2. Oxford, Pergamon Press, 1971.

14. Rashevskii P. K. Rimanova geometriya i tenzornyi analiz [Riemannian geometry and tensor analysis]. Moscow, Nauka Publ., 1967. 664 p.

15. Landau L. D., Lifshits E. M. Quantum mechanics, Course of Theoretical Physics, Vo. 3. Oxford, Pergamon Press, 1965.

16. Gladkov S. O. [To the problem of linearization of the basic equation of the general relativity]. In: Inzhenernaya fizika [Engineering Physics], 2017, vol. 19, no. 10, pp.19-27.

17. Gladkov S. O. [To the problem of the interaction between the fields of different physical nature]. In: Inzhenernaya fizika [Engineering Physics], 2018, vol. 20, no. 3, pp. 17-31.

18. Gladkov S. O. To the problem of a common field theory. In: Journal of Physics: Conference series, 2018, vol. 1051: XX International Meeting “Physical Interpretations of Relativity Theory 2017”, pp. 012029.


Review

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)