Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

SIMULATION OF MOTION OF AN OBJECT WITH IMMUTABLE COMPLEX CONFIGURATION IN A CONFINED SPACE

https://doi.org/10.18384/2310-7251-2019-1-107-118

Abstract

The problem of moving and embedding an object of immutable form in a confined space is analyzed. An algorithm and a program simulating the behavior of such an object are constructed on the example of moving a ‘knight’ on a chessboard. It is shown that there exist optimal ways to move an object of immutable form in the required chessboard cell and a minimum time to overcome all the way and embed it in the desired point.

About the Authors

E. A. Akbarov
Moscow Region State University
Russian Federation


E. V. Kalashnikov
Moscow Region State University
Russian Federation


References

1. An Introduction to Molecular Biology/DNA the unit of life [Электронный ресурс] // Wikibooks : [сайт]. URL: https://en.wikibooks.org/wiki/An_Introduction_to_Molecular_Biology/DNA_the_unit_of_life (дата обращения: 20.12.2018).

2. Xiaoyu Chen, Manuel A.F.V. Gonзalves. DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells // iScience. 2018. Vol. 6. P. 247-263.

3. Калашников Е. В. Рост и физические свойства кристаллов. СПб.: Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2013. 117 с.

4. Кон И. С. Постоянство и изменчивость личности // Психологический журнал. 1987. Т. 8. № 4. C. 126-136.

5. Крайг Г. Психология развития. СПб.: Питер, 2000. 992 с.

6. Boon C., Den Hartog D. N. Human resource management, person-environment fit, and trust // Trust and human resource management. 2011. P. 109-121

7. Ben C. H. Kuo. Coping, acculturation, and psychological adaptation among migrants: a theoretical and empirical review and synthesis of the literature // Health Psychology and Behavioral Medicine. 2014. Vol. 2. No. 1. P. 16-33.

8. Шишаев М. Г., Елисеенко С. Ю. Имитационная модель пространственных перемещений объектов с квазислучайными параметрами маршрутов // Труды Кольского научного центра РАН. 2012. № 6(13). С. 106-114.

9. Космачев С. Н. Автоматизированные информационные системы [Электронный ресурс] // Пятифан : [сайт]. URL: http://5fan.ru/wievjob.php?id=39990 (дата обращения: 20.12.2018).

10. Lee C. Y. An Algorithm for Path Connections and Its Applications // IRE Transactions on Electronic Computers. 1961. Vol. EC-10. Iss. 3. P. 346-365.

11. Maze Router: Lee Algorithm [Электронный ресурс]. URL: http://users.eecs.northwestern.edu/~haizhou/357/lec6.pdf (дата обращения: 20.12.2018).

12. Loebbing M., Wegener I. The Number of Knight’s Tours Equals 33,439,123,484,294 - Counting with Binary Decision Diagrams // The Electronic Journal of Combinatorics. 1996. Vol. 3. Iss. 1. P. 36-40.

13. Parberry I. An Efficient Algorithm for the Knight’s Tour Problem // Discrete Applied Mathematics. 1997. Vol. 73. Iss. 3. P. 251-260.


Review

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)