Preview

Вестник Государственного университета просвещения. Серия: Физика-Математика

Расширенный поиск

МЕТОД ВСПОМОГАТЕЛЬНОЙ ОКРУЖНОСТИ В ПЛАНИМЕТРИЧЕСКИХ ЗАДАЧАХ ЕГЭ

https://doi.org/10.18384/2310-7251-2019-1-97-106

Аннотация

Одной из важнейших образовательных целей современной школы является подготовка учащихся к успешной сдаче выпускных экзаменов. В структуру выпускного экзамена ЕГЭ по математике профильного уровня входит геометрическая задача на доказательство повышенной сложности, требующая от обучающихся всестороннего знания планиметрии. Важнейшей особенностью является отсутствие единых алгоритмов решения таких задач, успех во многом зависит от накопленного учащимися опыта решения комбинированных планиметрических задач. Тем не менее, практика решения позволила выделить некоторые геометрические структуры, являющиеся вспомогательными ключами к поиску правильного решения. Одним из таких ключей стал метод вспомогательной окружности, который авторы хотели бы представить в рамках данной статьи. В статье описывается суть метода, условия его применения, рассмотрены задачи на доказательство, взятые из реальных контрольно-измерительных материалов экзамена, и приведены их решения в рамках описанного метода.

Об авторах

Н. А. Казаков
Московский государственный областной университет
Россия


Т. И. Кузнецова
Институт русского языка и культуры Московского государственного университета имени М. В. Ломоносова
Россия


Список литературы

1. Казаков Н. А. Роль мотивации в развитии субъектности обучающихся общеобразовательной организации [Электронный ресурс] // Наука на благо человечества - 2017: сборник научных статей магистрантов и бакалавров по итогам по итогам Международной научной конференции молодых учёных, аспирантов и студентов (МГОУ, г. Москва, 17-28 апреля 2017 г.). М.: ИИУ МГОУ, 2017. С. 294-298. - 1 электрон. опт. диск (CD-ROM)

2. Казаков Н. А., Забелина С. Б. Реализация творческого аспекта учебной деятельности обучающихся на уроках математики // Материалы ежегодной всероссийской научно-практической конференции преподавателей, аспирантов и студентов «Наука на благо человечества», посвящённой 85-летию МГОУ: Физико-математический факультет. М: ИИУ МГОУ, 2016. С. 35-41.

3. Казаков Н. А., Кузнецова Т. И. Из истории терминов «модель» и «моделирование». Часть 3. Чертежи - модели задач // Проблемы учебного процесса в инновационных школах: сборник научных трудов / под ред. О. В. Кузьмин. Вып. 21. Иркутск: Издательство Иркутского государственного университета, 2018. С. 54-58.

4. Катуржевская О. В. Методика преподавания математики: учебно-методическое пособие. Армавир: РИО АГПУ, 2016. 140 с.

5. ЕГЭ. Математика. Профильный уровень: типовые экзаменационные варианты: 36 вариантов / под ред. И. В. Ященко. М.: Издательство «Национальное образование». 2018. 256 с.


Рецензия

Просмотров: 167


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)