Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

EXPERIMENTAL STUDY OF THE STRUCTURE OF SHOCK WAVES IN A COMPRESSED POWDER OF NIKEL NANOPARTICLES

https://doi.org/10.18384/2310-7251-2021-4-66-74

Abstract

Aim. Features of propagation of shock compression waves in samples of compressed nickel nanoparticles have been studied for the first time by laser interferometry under uniaxial loading conditions at relatively low pressures of 1.7 and 4.1 GPa. Methodology. Shock wave profiles of a compressed nickel nanopowder loaded by a one-dimensional shock compression wave are measured by a laser interferometry method. Results. Shock wave profiles and points of the shock Hugoniot of the material are obtained. The Hugoniot elastic limit is determined to be 0.48 GPa. Research implications. It is found that shock wave profiles of pressed nickel nanoparticles have a complex multi-stage structure in which the precursor wave is clearly distinguished. It is shown that the compression wave profile can be described by multiple reflection of the precursor wave from a sample surface and an oncoming plastic shock wave. It is established that in the range of studied pressures, the sample thickness and the loading regime determine the process of shock compression. It is demonstrated that the difference between the states of matter behind the plastic shock wave front before the first precursor reflection and after the last reflection is significant.

Keywords


About the Authors

T. A. Rostilov
Joint Institute for High Temperatures of the Russian Academy of Science
Russian Federation


V. S. Ziborov
Joint Institute for High Temperatures of the Russian Academy of Science
Russian Federation


A. Ju. Dolgoborodov
Joint Institute for High Temperatures of the Russian Academy of Science
Russian Federation


References

1. Медведев А. Б., Трунин Р. Ф. Ударное сжатие пористых металлов и силикатов // Успехи физических наук. 2012. Т. 182. № 8. С. 829-846. DOI: 10.3367/UFNr.0182.201208b.0829.

2. Dattelbaum D. M., Coe J. D. Shock-driven decomposition of polymers and polymeric foams // Polymers. 2019. Vol. 11. Iss. 3. P. 493. DOI: 10.3390/polym11030493.

3. Davison L. Shock-wave structure in porous solids // Journal of Applied Physics. 1971. Vol. 42. Iss. 13. P. 5503-5512. DOI: 10.1063/1.1659971.

4. Linde R. K., Schmidt D. N. Shock propagation in nonreactive porous solids // Journal of Applied Physics. 1966. Vol. 37. Iss. 8. P. 3259-3271. DOI: 10.1063/1.1703192.

5. Ударная сжимаемость смесей микро- и наноразмерных порошков никеля и алюминия / Якушев В. В., Ананьев С. Ю., Уткин А. В., Жуков А. Н., Долгобородов А. Ю. // Физика горения и взрыва. 2018. Т. 54. № 5. С. 45-50. DOI: 10.15372/FGV20180506.

6. Скорость звука в ударно-сжатых образцах из смеси микро- и нанодисперсных порошков никеля и алюминия / Якушев В. В., Ананьев С. Ю., Уткин А. В., Жуков А. Н., Долгобородов А. Ю. // Физика горения и взрыва. 2019. Т. 55. № 6. С. 108-114. DOI: 10.15372/FGV20190615.

7. Зиборов В. С., Канель Г. И., Ростилов Т. А. Экспериментальное исследование характера деформации сферопластиков при ударном сжатии // Физика горения и взрыва. 2020. Т. 56. № 2. С. 124-129. DOI: 10.15372/FGV20200215.

8. Rostilov T. A., Ziborov V. S. Experimental study of shock wave structure in syntactic foams under high-velocity impact // Acta Astronautica. 2021. Vol. 178. P. 900-907. DOI: 10.1016/j.actaastro.2020.10.022.

9. Bonnan S., Hereil P. L., Collombet F. Experimental characterization of quasi static and shock wave behavior of porous aluminum // Journal of Applied Physics. 1998. Vol. 83. Iss. 11. P. 5741-5749. DOI: 10.1063/1.367430.

10. Ahrens T. J, Gust W. H., Royce E. B. Material Strength Effect in the Shock Compression of Alumina // Journal of Applied Physics. 1968. Vol. 39. Iss. 10. P. 4610-4616. DOI: 10.1063/1.1655810.

11. Butcher B. M., Karnes C. H. Dynamic compaction of Porous Iron // Journal of Applied Physics. 1969. Vol. 40. Iss. 7. P. 2967-2976. DOI: 10.1063/1.1658109.


Review

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)