Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

INCREASE IN THE THERMOELECTRIC EMF OF COLLOIDAL SOLUTIONS AS A RESULT OF DIALYSIS PURIFICATION

https://doi.org/10.18384/2310-7251-2021-3-29-38

Abstract

Aim. The paper presents an experimental study of thermoelectric properties of colloidal solutions and the effect of dialysis purification on these properties, using the example of colloidal solutions of silver iodide. Methodology. The paper uses standard methods for measuring the coefficient of thermoelectric EMF and the coefficient of electrical conductivity used for electrolyte and colloidal solutions. To purify colloidal solutions from the ions present in them, the method of dialysis purification using semipermeable membranes is used. Results. It is shown that during the removal of ions from colloidal solutions, their thermoelectric EMF increases in absolute value, while the coefficient of electrical conductivity decreases. The observed increase cannot be explained only by the effect of an increase in the thermoelectric strength of the ionic electrolyte solution with a decrease in its concentration. The results obtained can be explained in the framework of the thermodynamics of irreversible processes as a consequence of an increase in the transfer numbers of large colloidal particles, which, unlike ions, have initially high values of the transfer heat. Research implications. The results of the study contribute to the theory of transport phenomena in dispersed colloidal systems.

About the Authors

A. V. Sidorov
Bunin Yelets State University
Russian Federation


A. A. Zaitsev
Bunin Yelets State University
Russian Federation


D. V. Kuznetsov
Bunin Yelets State University
Russian Federation


References

1. Воюцкий С. С. Курс коллоидной химии. М.: Химия, 1974. 512 с.

2. Гельфман М. И., Ковалевич О. В., Юстратов В. П. Коллоидная химия. СПб.: Лань, 2003. 336 с.

3. Духин С. С. Электропроводность и электрокинетические свойства коллоидных систем. Киев: Наукова думка, 1975. 249 с.

4. Хаазе Р. Термодинамика необратимых процессов. М.: Мир, 1967. 544 с.

5. Thermoelectric and Thermoelectrokinetic Phenomena in Liquid Biological Systems / Grabov V. M., Zaitsev A. A., Kuznetsov D. V., Sidorov A. V. // Technical Physics. 2018. Vol. 63 (10). P. 1415-1419. DOI: 10.1134/S1063784218100122.

6. Iacopini S., Rusconi R., Piazza R. The “macromolecular tourist”: Universal temperature dependence of thermal diffusion in aqueous colloidal suspension // The European Physical Journal E. 2006. Vol. 19 (1). P. 59-67. DOI: 10.1140/epje/e2006-00012-9.

7. Majee A., Wьrger A. Collective Thermoelectrophoresis of Charged Colloids // Physical Review E. 2011. Vol. 83. Iss. 6. P. 061403. DOI: 10.1103/PhysRevE.83.061403.

8. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? / Salez T. J., Bo Tao Huang, Rietjens M., Bonetti M., Wiertel-Gasquet C., Roger M., Filomeno C. L., Dubois E., Perzynski R, Nakamae S. // Physical Chemistry Chemical Physics. 2017. Vol. 19. Iss. 14. P. 9409-9416. DOI: 10.1039/C7CP01023K.

9. Thermoelectric and Thermoelectrokinetic Phenomena in Colloidal Solutions / Sidorov A. V., Grabov V. M., Zaitsev A. A., Kuznetsov D. V. // Semiconductors. 2019. Vol. 53. P. 756-760. DOI: 10.1134/S1063782619060228.

10. Stadelmaier D., Köhler W. From Small Molecules to High Polymers: Investigation of the Crossover of Thermal Diffusion in Dilute Polystyrene Solutions // Macromolecules. 2008. Vol. 41. Iss. 16. P. 6205-6209. DOI: 10.1021/ma800891p.


Review

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)