Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

A METHOD FOR AN APPROXIMATE SOLUTION TO A PARABOLIC EQUATION WITH A POWER-LAW NONLINEARITY

https://doi.org/10.18384/2310-7251-2021-3-18-28

Abstract

Aim. The purpose is to find an approximate solution to the first initial boundary value problem for a parabolic equation with a power-law nonlinearity. The problem is solved using an approximate analytical method based on the application of an a priori estimation of the solution to the problem for the linearization of the original equation. Methodology. The first step in applying the method is to reduce the nonlinear equation to the loaded equation, by replacing the nonlinear member with its integral in the spatial variable. Following this, an a priori estimate of the obtained problem is established in a suitable functional space. By integrating the loaded equation with respect to the spatial variable, a transition is made to the nonlinear ordinary differential equation associated with it. The latter is linearized using the a priori estimate of the loaded problem, in which the upper bound of inequality is chosen. Results. A formula is obtained that expresses the solution to the loaded equation in terms of its norm and the solution to the associated ordinary differential equation. Approximation of the solution to a nonlinear equation is proposed to be performed by using an iterative process for solving a sequence of linear problems. An example illustrating the application of the method to a model problem is presented. Research implications. The applied procedure makes it possible to obtain an analytical expression for an approximate solution to a nonlinear problem. The described method can be applied to partial differential equations of any type and order, containing the natural degree of the desired function or its derivative.

About the Author

O. L. Boziev
Kabardino-Balkarian State University named after H. M. Berbekov; Institute of Computer Science and Problems of Regional Management of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Russian Federation


References

1. Бозиев О. Л. Приближенное решение нагруженного гиперболического уравнения с однородными начальными условиями // Вестник Тверского государственного университета. Серия: Прикладная математика. 2017. № 2. С. 49-58. DOI: 10.26456/vtpmk108.

2. Бозиев О. Л. О приближенно-аналитическом методе решения нелинейного гиперболического уравнения с однородными начальными условиями // Вестник Московского государственного областного университета. Серия: Физика-Математика. 2017. № 3. С. 43-52. DOI: 10.18384/2310-7251-2017-3-43-52.

3. Бозиев О. Л. Аппроксимация решений нелинейных параболических уравнений решениями ассоциированных нагруженных уравнений // Нелинейный мир. 2018. Т. 16. № 4. С. 3-10. DOI: 10.18127/j20700970-201804-01.

4. Мартинсон Л. К., Малов Ю. И. Дифференциальные уравнения математической физики. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. 368 с.

5. Нахушев А. М. Нагруженные уравнения и их применение. М.: Наука, 2012. 232 с.

6. Полосков И. Е. Анализ поведения распределенных систем, описываемых стохастическими уравнениями типа КПП // Вестник Пермского университета. Серия: Математика. Информатика. Механика. 2009. № 7 (33). С. 61-65.

7. Филатов А. Н., Шарова Л. В. Интегральные неравенства и теория нелинейных колебаний. М.: Наука, 1976. 152 с.


Review

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)