Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

COMPUTER SIMULATION OF NEURAL NETWORK OPERATION FOR OBJECT RECOGNITION

https://doi.org/10.18384/2310-7251-2021-2-6-17

Abstract

Aim. We construct a computer model of a neural network for object recognition. Methodology. Based on the ideas underlying the theory of recognition and the theory of neural networks, we have constructed a model of neural network operation designed to recognize the studied mappings with a given accuracy. For the successful operation of a neural network, we have used open access databases from remote servers, which makes it possible to use neural networks in cramped conditions (in the absence of powerful computers). A program in Python has been developed to organize and manage the neural network. Results. A neural network has been constructed that recognizes the studied mappings with a given accuracy. To manage the built neural network and attract database arrays from remote servers, a program in Python has been developed. The principle of neural network operation is demonstrated in practice, using the example of recognition of the studied mappings. Research implications. The model provides a real recipe for constructing a neural network and using it in practice in the absence of a powerful computer.

About the Authors

K. A. Aksenov
Moscow Region State University
Russian Federation


S. A. Klyuchnikov
Moscow Region State University
Russian Federation


S. E. Evstafyeva
Moscow Region State University
Russian Federation


E. V. Kalashnikov
Moscow Region State University
Russian Federation


References

1. Алтайский М. В., Капуткина Н. Е., Крылов В. А. Квантовые нейронные сети: современное состояние и перспективы развития // Физика элементарных частиц и атомного ядра. 2014. Т. 45. Вып. 5-6. С. 1824-1864.

2. Бугримов А. Л., Лаврентьев В. В. Python. Быстрое погружение в программирование: учебное пособие. М.: ИИУ МГОУ, 2018. 47 с.

3. Гафаров Ф. М., Галимянов А. Ф. Искусственные Нейронные сети и их приложение: учебное пособие. Казань: Казанский Государственный Университет, 2018. 121 с.

4. Любимцев О. В., Любимцева О. Л. Линейно-регрессивные модели в эконометрике. Нижний Новгород: ННГАСУ, 2016. 44 с.

5. Мазуров Вл. Д. Математические методы распознавания образов: учебное пособие. Екатеринбург: Издательство Уральского государственного университета, 2010. 101 с.

6. Ханеев Д. М., Филатова Н. Н. Пирамидальная сеть для классификации объектов, представленных нечёткими признаками // Известия ЮФУ. Технические науки. 2012. № 9 (134). С. 45-49.

7. Haykin S. Neural Networks and Learning Machines; 3rd edition. New Jersey: Pearson Education, 2009. 936 p.

8. Montavon G., Samek W., Müller Kl.-R. Methods for interpreting and understanding deep neural networks // Digital Signal Processing: A Review Journal. 2018. Vol. 73. P. 1-15. DOI: 10.1016/j.dsp.2017.10.011.

9. Thaler S., Furrer D. Neural Network Modeling // Advanced Materials & Processes. 2005. Vol. 163. Iss. 11. P. 42-46.

10. Liu T., Fang Sh., Zhao Y., Wang P., Zhang J. Implementation of Training Convolutional Neural Networks [Электронный ресурс] // arXiv : [сайт]. URL: https://arxiv.org/ftp/arxiv/papers/1506/1506.01195.pdf (дата обращения: 20.11.2020).


Review

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)