INVESTIGATION OF THE GRID CONVERGENCE OF THE EXPLICIT MAC-CORMAK METHOD APPLIED TO SIMULATION OF ELECTRICALLY CHARGED AEROSOL FLOW CAUSED BY THE MOTION OF DISPERSED PARTICLES UNDER THE ACTION OF INTERNAL ELECTRIC ELECTRICITY
https://doi.org/10.18384/2310-7251-2021-1-39-53
Abstract
About the Author
D. A. TukmakovRussian Federation
References
1. Нигматулин Р. И. Основы механики гетерогенных сред. М.: Наука, 1978. 336 с.
2. Кутушев А. Г. Математическое моделирование волновых процессов в аэродисперсных и порошкообразных средах. СПб.: Недра, 2003. 284 с.
3. Федоров А. В., Фомин В. М., Хмель Т. А. Волновые процессы в газовзвесях частиц металлов: монография. Новосибирск: Параллель, 2015. 301 с.
4. Суров В. С. Гиперболическая модель односкоростной многокомпонентной теплопроводной среды // Теплофизика высоких температур. 2009. Т. 47. № 6. С. 905-913.
5. Шаповалов А. В., Шаповалов В. А., Рязанов В. И. Математическая модель распространения примесей в ближней зоне при работе ракетных двигателей // Наука. Инновации. Технологии. 2017. № 2. С. 87-96.
6. Моделирование движения частицы в наклонной плоскости под действием потока воды / Еремеева Н. Г., Куличкина Т. П., Матвеев И. А., Никифорова Л. В., Яковлев Б. В. // Математические заметки СВФУ. 2019. Т. 26. № 4. С. 73-82. DOI: 10.25587/SVFU.2019.82.51.007.
7. Дикалюк А. С., Суржиков С. Т. Численное моделирование разреженной пылевой плазмы в нормальном тлеющем разряде // Теплофизика высоких температур. 2012. Т. 50. № 5. С. 611-619.
8. Семенов В. П., Тимофеев А. В. Параметрический резонанс и перенос энергии в пылевой плазме // Математическое моделирование. 2018. Т. 30. № 2. С. 3-17.
9. Heat transfer enhancement in a gas-solid suspension flow by applying electric field / Tadaa Y., Yoshioka S., Takimoto A., Hayashi Y. // International Journal of Heat and Mass Transfer. 2016. Vol. 93. P. 778-787. DOI: 10.1016/j.ijheatmasstransfer.2015.09.063.
10. Невский Ю. А., Осипцов А. Н. Медленная гравитационная конвекция дисперсных систем в областях с наклонными границами // Известия Российской академии наук. Механика жидкости и газа. 2011. № 2. С. 65-81.
11. Тукмаков Д. А. Конечно-разностная модель динамики гомогенной смеси в применении к исследованию распространения и отражения ударной волны большой интенсивности в водородно-воздушной среде // Модели, системы, сети в экономике, технике, природе и обществе. 2020. № 1 (33). C. 86-97. DOI: 10.21685/2227-8486-2020-1-7.
12. Тукмаков Д. А. Математическая модель нестационарной сорбции в двухфазной среде, учитывающая пространственную неравномерность распределения концентрации микрокомпонента в фазе сорбента // Вестник Тверского государственного университета. Серия: Химия. 2019. № 4 (38). C. 24-35. DOI: 10.26456/vtchem2019.4.3.
13. Tukmakov D. A. Numerical study of polydisperse aerosol dynamics with the drop destruction // Lobachevskii Journal of Mathematics. 2019. Vol. 40. Iss. 6. P. 824-827. DOI: 10.1134/S1995080219060234.
14. Тукмаков А. Л., Тукмаков Д. А. Применение неявной конечно-разностной схемы с весами для моделирования колебаний газа в акустическом резонаторе // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2011. № 4. С. 119-127.
15. Tukmakov D. A. Comparison of the physical experiment of the gas oscillations in the acoustic resonator with numerical calculations // Journal of Physics: Conference series. 2019. Vol. 1328, Scientific Technical Conference on Low Temperature Plasma during the Deposition of Functional Coatings (5-8 November 2018, Kazan University, Kazan, Russian Federation). P. 012087. DOI: 10.1088/1742-6596/1328/1/012087.
16. Лойцянский Л. Г. Механика жидкости и газа. М: Дрофа, 2003. 784 с.
17. Fletcher C. A. Computation Techniques for Fluid Dynamics. Berlin: Springer-Verlang, 1988. 502 p.
18. Музафаров И. Ф., Утюжников С. В. Применение компактных разностных схем к исследованию нестационарных течений сжимаемого газа // Математическое моделирование. 1993. T. 5. № 3. C. 74-83.
19. Тукмаков А. Л. Численное моделирование акустических течений при резонансных колебаниях газа в закрытой трубе // Известия высших учебных заведений. Авиационная техника. 2006. № 4. С. 33-36.
20. Сальянов Ф. А. Основы физики низкотемпературной плазмы, плазменных аппаратов и технологий. М.: Наука, 1997. 240 c.
21. Крылов В. И., Бобков В. В., Монастырный П. И. Вычислительные методы. Т. 2. М.: Наука, 1977. 401 c.