Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

SIMULATION OF GAMBLING. CONSTRUCTION AND STUDY OF THE COMPUTER MODEL OF DOUBLE BET IN THE GAME

https://doi.org/10.18384/2310-7251-2021-1-17-26

Abstract

Aim. We have studied the main mechanisms that control the development of gambling. Methodology. Gambling is simulated with a given pot size, a given bet, and a choice of game strategy. The player, in case of winning, receives a double bet. In case of loss, the entire bet is taken from the player. Various game strategies are considered when manipulating the “size” of the pot, the “size” of the bet, and the number of steps (iterations) to achieve success. The finiteness of the game time (the number of iterations) and the discreteness of the ongoing processes are taken into account. We have studied the dependence of the winning frequency on the bet size and the number of steps (iterations) for a given “size” of the pot required for winning. Results. The ways of possible winning are revealed depending on the size of the bet and the number of steps (iterations) for a given “size” of the pot. Research Implications. The paper considers various strategies of the game, focused on the maximum win.

About the Authors

K. S. Zhivaeva
Moscow Region State University
Russian Federation


A. L. Bugrimov
Kosygin State University of Russia
Russian Federation


E. V. Kalashnikov
Moscow Region State University
Russian Federation


References

1. Данилов В. И. Лекции по теории игр: Курс лекций. М.: Российская экономическая школа. 2002. 140 с.

2. Теория вероятностей и математическая статистика для технических университетов. Часть I: Теория вероятностей: учебное пособие / Крицкий О. Л., Михальчук А. А., Трифонов А. Ю, Шинкеев М. Л.; Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2010. 212 с.

3. Феллер В. Введение в теорию вероятностей и её приложения. М.: Мир, 1964. 493 с.

4. Ширяев А. Н. Случайное блуждание. I. Вероятности разорения и средняя продолжительность при игре с бросанием монеты // Ширяев А. Н. Вероятность. М.: Наука, 1980. С. 94-100.

5. Kamron J. The expected value of an advantage blackjack player //All Graduate Plan B and other Reports. 5-2014 [Электронный ресурс]. URL: https://digitalcommons.usu.edu/gradreports/524 (дата обращения: 10.03.2020).

6. Shi J., Littman M. L. Abstraction Methods for Game Theoretic Poker // Computers and Games: Second International Conference (CG 2001, Hamamatsu, Japan, October 26-28, 2000 Revised Papers) / ed. Marsland T., Frank I. Berlin, Heidelberg, New York: Springer, 2001. P. 333-345 (Series: Lecture Notes in Computer Science, Vol. 2063).

7. Advances in Computer Games: 16th International Conference, ACG 2019, Macao, China, August 11-13, 2019, Revised Selected Papers / Cazenave T., van den Herik J., Saffidine A., Wu I.-C., eds. Berlin, Heidelberg, New York: Springer US, 2020. 194 p. (Series: Lecture Notes in Computer Science. Vol. 2516).

8. Owen G. Discrete Mathematics and Game Theory. New York: Springer. 358 p. (Series: Theory and Decision Library C. Vol. 22).

9. Бугримов А. Л., Лаврентьев В. В. Python. Быстрое погружение в программирование: учебное пособие. М.: ИИУ МГОУ, 2018. 47 с.


Review

Views: 159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)