Preview

Bulletin of Federal State University of Education. Series: Physics and Mathematics

Advanced search

Dispersion of the anisotropy of the refractive index of a liquid crystal in a low-temperature nematic phase

https://doi.org/10.18384/2949-5067-2025-3-76-89

Abstract

Aim. To study the dispersion of the refractive index anisotropy Δn and the order parameter S of the liquid crystal mixture ZhK-1289 in the temperature range of –60 to +60°C and to verify the applicability of the Landau-de Gennes model.

Methodology. Interference spectroscopy was employed. Transmission spectra of a planar LC cell were measured at temperatures ranging from –60°C to +60°C. The birefringence Δn was determined from the positions of interference maxima. The dependence S(T) was calculated based on Δn(T).

Results. The dependences Δn(λ) were established throughout the entire existence range of the nematic phase. The refractive index anisotropy decreases with increasing temperature and wavelength. The order parameter decreases from 0.75 at –40°C to 0.23 at +61°C. The critical exponent β = 0.23 ± 0.01 is close to 0.25, confirming the model.

Research implications. Data on Δn(λ, T) and S(T) in the low-temperature nematic phase of ZhK-1289 were obtained, and the Landau-de Gennes model was validated. The results are important for designing thermally stable LC devices.

About the Authors

I. S. Chekulaev
Federal State University of Education
Russian Federation

Igor S. Chekulaev – Research Assistant, Laboratory of Theoretical and Applied Nanotechnology

Moscow



S. V. Simushkina
Federal State University of Education
Russian Federation

Sofia V. Simushkina – Student, Faculty of Physics and Mathematics

Moscow



Yu. V. Kovalev
Federal State University of Education
Russian Federation

Yuriy V. Kovalev – Student, Faculty of Physics and Mathematics

Moscow



Yu. D. Kuleshova
Federal State University of Education
Russian Federation

Yulia D. Kuleshova – Cand. Sci. (Phys.-Math.), Dean, Faculty of Physics and Mathematics

Moscow



A. I. Krukov
Federal State University of Education
Russian Federation

Aleksey I. Kryukov – Head, Pedagogical Technopark «Quantorium» named after I. V. Kurchatov

Moscow



V. G. Chigrinov
Federal State University of Education
Russian Federation

Vladimir G. Chigrinov – Dr. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Theoretical and Applied Nanotechnology

Moscow



A. D. Kurilov
Federal State University of Education
Russian Federation

Aleksandr D. Kurilov – Cand. Sci. (Phys.-Math.), Laboratory Head, Laboratory of Theoretical and Applied Nanotechnology

Moscow



References

1. Kato, T., Yoshio, M., Ichikawa, T., Soberats, B., Ohno, H. & Funahashi, M. (2017). Transport of ions and electrons in nanostructured liquid crystals. In: Nature Reviews Materials, 2 (4), 17001. DOI: 10.1038/natrevmats.2017.1

2. Li, Q. (2018). Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications. New York: John Wiley & Sons.

3. Kumar, N., Zhang, R., De Pablo, J. J. & Gardel, M. L. (2018). Tunable structure and dynamics of active liquid crystals. In: Science Advances, 4 (10), eaat7779. DOI: 10.1126/sciadv.aat7779.

4. Blinov, L. M. & Chigrinov, V. G. (1994). Electrooptic effects in Liquid Crystal Materials. New York: Springer-Verlag.

5. Qiao, S., Liao, R., Xie, M., Song, X., Zhang, A., Fang, Y., Zhang, C. & Yu, H. (2025). Synthesis and Optoelectronic Properties of Perylene Diimide-Based Liquid Crystals. In: Molecules, 30 (4), 799. DOI: 10.3390/molecules30040799.

6. Rothera, J. G., Yu, J., AlNajm, K., Butrus, R., Ahangari‐Bashash, E., Watanabe, L. K., Rawson, J. M., Dmitrienko, A., Vukotic, V. N. & Eichhorn, S. H. (2025). Core-Only Calamitic Liquid Crystals: Molecular Design and Optoelectronic Properties. In: Chemistry – An Asian Journal, 20 (8), e202401543. DOI: 10.1002/asia.202401543.

7. Chen, L., Cao, Y., Huo, H., Lu, S., Hou, Y., Tan, T., Li, X., Liu, F. & Zhang, M. (2025). Metallacycle-cored luminescent ionic liquid crystals with trigonal symmetry. In: Chemical Science, 16 (12), 4992–4997. DOI: 10.1039/D4SC07318E.

8. Kӧysal, O., Gleeson, H. F. & Kocakülah, G. (2024). A double-layer light shutter consisting of polymer dispersed liquid crystal and azo dye/quantum dot. In: Optical Materials, 154, 115645. DOI: 10.1016/j.optmat.2024.115645.

9. Pereiro-García, J., Caño-García, M., Blanco-Fernández, O., Ramos-Uña, R., Quintana, X. & Geday, M. A. (2025). Chromatic aberration compensation using thin, transparent, large aperture, wide focal range, adaptive liquid crystal lens. In: Optics & Laser Technology, 180, 111532. DOI: 10.1016/j.optlastec.2024.111532.

10. Modin, A., Leheny, R. L. & Serra, F. (2024). Spatial Photo‐Patterning of Nematic Liquid Crystal Pretilt and its Application in Fabricating Flat Gradient-Index Lenses. In: Advanced Materials, 36 (23), 2310083. DOI: 10.1002/adma.202310083.

11. Lin, Y. H., Wang, Y. J. & Reshetnyak, V. (2017). Liquid crystal lenses with tunable focal length. In: Liquid Crystals Reviews, 5 (2), 111–143. DOI: 10.1080/21680396.2018.1440256.

12. Hsieh, C.-F., Pan, R.-P., Tang, T.-T., Chen, H.-L. & Pan, C.-L. (2006). Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. In: Optics letters, 31 (8), 1112–1114. DOI: 10.1364/OL.31.001112.

13. Seok Kang, W., Mun, B.-J., Lee, G.-D., Ho Lee, J., Koo Kim, B., Chul Choi, H., Jin Lim, Y. & Hee Lee, S. (2012). Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display. In: Journal of Applied Physics, 111 (10), 103119. DOI: 10.1063/1.4723819.

14. Lavrentovich, M. D., Sergan, T. A. & Kelly, J. R. (2004). Switchable broadband achromatic half-wave plate with nematic liquid crystals. In: Optics letters, 29 (12), 1411–1413. DOI: 10.1364/OL.29.001411.

15. Lin, C.-C., Huang, T.-C., Chu, C.-C. & Hsiao, V. K. S. (2016). Optically switchable and axially symmetric half-wave plate based on photoaligned liquid crystal films. In: Optical Materials, 57, 23–27. DOI: 10.1016/j.optmat.2016.04.006.

16. Chausov, D. N., Kurilov, A. D., Kucherov, R. N., Simakin, A. V. & Gudkov, S. V. (2020). Electro-optical performance of nematic liquid crystals doped with gold nanoparticles. In: Journal of Physics: Condensed Matter, 32 (39), 395102. DOI: 10.1088/1361-648X/ab966c.

17. Kurilov, A. D., Chausov, D. N., Osipova, V. V., Sagdeev, D. O., Chekulaev, I. S., Kucherov, R. N., Belyaev, V. V. & Galyametdinov, Y. G. (2023). Concentration-dependent dielectric and electro-optical properties of composites based on nematic liquid crystals and CdS: Mn quantum dots. In: Soft Matter, 19 (11), 2110–2119. DOI: 10.1039/D2SM01352E.

18. Miszczyk, E., Raszewski, Z., Kкdzierski, J., Nowinowski-Kruszelnicki, E., Kojdecki, M. A., Perkowski, P., Piecek, W. & Olifierczuk, M. Interference method for determining dispersion of refractive indices of liquid crystals. In: Molecular Crystals and Liquid Crystals, 2011, 544 (1), 22/[1010]-36/[1024]. DOI: 10.1080/15421406.2011.569262.

19. Miszczyk, E., Morawiak, P., Mazur, R., Mrukiewicz, M., Olifierczuk, M., Piecek, W., Raszewski, Z., Kula, P., Kędzierski, J., Zieliński, J. & Harmata, P. (2018). A direct assessment of refractive indices of nematic liquid crystals at broad VIS-MWIR range. In: Liquid Crystals, 45 (5), 703–714. DOI: 10.1080/02678292.2017.1376125.


Review

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)