Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

SPECTRAL CHARACTERISTICS OF AN INCOMPRESSIBLE FLUID FLOW IN TURBULENT BOUNDARY LAYERS

https://doi.org/10.18384/2310-7251-2020-4-12-27

Abstract

The aim is to study a model of a developed turbulent flow of an incompressible fluid in a boundary layer on a plate. The study is based on the analysis of the Navier-Stokes equations describing the behaviour of Tollmien-Schlichting wave amplitudes in a single-mode approximation. Methodology. A weakly nonlinear version of the wave model of a developed turbulent boundary layer is considered. The dispersion characteristics of the waves of the least damped mode are determined, and the conditions of multiple three-wave resonance of this mode of Tollmien-Schlichting waves are analyzed. Equations for the coherent part are obtained using the many-scale method. Results. In the discrete representation of the coherent structure, it is shown that the sum of the squares of the moduli of the wave amplitudes in the state of multiple three-wave resonance, multiplied by real weight factors, is an invariant of the original dynamical system. Research implications. The invariant of the dynamic system is normalized to unity, and the Birkhoff-Khinchin theory is formulated.

About the Authors

V. A. Zharov
Central Aerohydrodynamic Institute
Russian Federation


I. I. Lipatov
Central Aerohydrodynamic Institute; Moscow Institute of Physics and Technology (National Research University)
Russian Federation


R. S. Selim
Moscow Institute of Physics and Technology (National Research University)
Russian Federation


References

1. Kachanov Y. S. Physical mechanisms of laminar-boundary-layer transition // Annual Review of Fluid Mechanics. 1994. Vol. 26. P. 411-482. DOI: 10.1146/annurev.fl.26.010194.002211.

2. Репик Е. У., Соседко Ю. П. Исследование прерывистой структуры течения в пристенной области турбулентного пограничного слоя // Турбулентные течения: сборник трудов / отв. ред.В. В. Струминский. М.: Наука, 1974. С. 172-184.

3. Robinson S. K. Coherent motions in the turbulent boundary layer // Annual Review of Fluid Mechanics. 1991. Vol. 23. P. 601-639. DOI: /10.1146/annurev.fl.23.010191.003125.

4. Boiko A. V., Grek G. R., Dovgal’ A. V., Kozlov V. V Vozniknovenie turbulentnosti v pristennykh techeniyakh [The emergence of turbulence in near-wall flows]. Novosibirsk, Nauka Publ., 1999. 328 p.

5. Организованные структуры в турбулентных течениях. Анализ экспериментальных работ по турбулентному пограничному слою: монография / Белоцерковский О. М., Хлопков Ю. И., Жаров В. А., Горелов С. Л., Хлопков А. Ю. М.: МФТИ, 2009. 302 с.

6. Benney D. J., Gustavsson H. L. A new mechanism for linear and nonlinear hydrodynamic instability // Studies in Applied Mathematics. 1981. Vol. 64. P. 185-209. DOI: 10.1002/sapm1981643185.

7. Жаров В. А. Вариант описания слабонелинейной динамики волнового пакета в пограничном слое на пластине в несжимаемой жидкости // Труды ЦАГИ. 1993б. Вып. 2523. С. 17-28.

8. Жаров В. А. О волновой теории развитого турбулентного пограничного слоя // Ученые записки ЦАГИ. 1986. Т. 17. № 5. С. 28-38.

9. Lipatov I. I., Tugazakov R. Ya. Mechanism of Transverse Structure Formation in Supersonic Flow Past a Body // Fluid Dynamics. 2014. Vol. 49. No. 5. P. 681-687. DOI: 10.1134/S0015462814050159.

10. Lipatov I. I., Tugazakov R. Ya. Influence of spatial effects on coherent structures formation in a supersonic flow near a plate // Progress in Flight Physics. 2017. Vol. 9. P. 423-434. DOI: 10.1051/eucass/2016090423.

11. Каток A.Б., Хасселблат Б. Введение в современную теорию динамических систем. М.: «ФАКТОРИАЛ», 1999. 768 с.

12. Колмогоров А. Н. Избранные труды. Математика и механика. M: Наука, 1985. 470 с.

13. Zharov V. A. Waveguide model of coherent structures in the developed turbulent boundary layer // Proceeding of 14th European Turbulence Conference (1-4 September, 2013, Lyon, France) [Электронный ресурс]. URL: http://etc14.ens-lyon.fr/openconf/modules/request.php?module=oc_proceedings&action=view.php&a=Poster&id=28 (дата обращения: 20.09.2020).

14. Musker A. J. Explicit expression for the smooth wall velocity distribution in turbulent boundary layer // AIAA Journal. 1979. Vol. 17. No. 6. P. 655-657. DOI: 10.2514/3.61193.

15. Селим Р. С. Собственные моды уравнения Орра-Зоммерфельда в развитом турбулентном пограничном слое // Труды МАИ (сетевое научное издание). 2019. № 109. URL: http://trudymai.ru/published.php?ID=111352 (дата обращения: 30.08.2020). DOI: 10.34759/trd-2019-109-5.

16. Landahl M. T. A wave-guide model for turbulent shear flow // Journal of Fluid Mechanics. 1967. Vol. 29. Iss. 3. P. 441-459. DOI: 10.1017/S0022112067000953.

17. Davidson R. C. Method in nonlinear plasma theory. New York, London: Academic Press, 1972. 356 p.

18. Pushpender K. S., Tapan K. S. Effect of frequency and wave number on the three-dimensional routes of transition by wall excitation // Physics of Fluids. 2019. Vol. 31. Iss. 6. P. 64-107. DOI: 10.1063/1.5097272

19. Zhang W., Liu P., Guo H. Conditional Sampling and Wavelet Analysis in Early Stage of Step-Generated Transition // AIAA Journal. 2018. Vol. 56. No. 6. P. 2471-2477. DOI: 10.2514/1.J056800.

20. Хлопков Ю. И., Горелов С. Л. Приложение методов статистического моделирования (Монте-Карло): учебное пособие. М.: МФТИ, 1994. 103 с.


Review

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)