Numerical and analytical study of turbulence of supersonic viscous gas flow
https://doi.org/10.18384/2949-5067-2024-1-68-82
Abstract
Aim. Building a nonlinear turbulence model of a supersonic viscous gas flow around a flat plate.
Methodology. Numerical modeling was applied within the framework of the Navier-Stokes equations without using turbulence models; the calculation results then used to build an analytical solution.
Results. Based on the data from direct numerical modeling of the Navier-Stokes equations, the mechanism of gas emission (burst) from the surface of a thermally insulated plate streamlined by a supersonic gas flow with M = 2 is explained. It is shown that the “viscous sublayer” becomes unstable, and forces appear on the streamlined surface, leading to the separation of bursts from the streamlined surface. The results obtained in the article confirm the experimental data: the fulfillment of the law of similarity of the burst formation frequency for supersonic gas flow. The results also confirm the realization of the resonant three-wave interaction of waves in the turbulent boundary layer, obtained in theoretical works.
Research implications. The results obtained in the article explain the mechanism of transition from laminar flow to turbulent flow at the nonlinear level, they complement and refine the theory of laminar -turbulent transition, previously studied within the framework of a weakly nonlinear approach.
About the Author
R. Ya. TugazakovRussian Federation
Renat Ya. Tugazakov – Dr. Sci. (Phys.–Math.), Leading researcher
ulitsa Zhukovskogo 1, Zhukovsky 140180, Moscow Region
References
1. Gaponov S. A., Maslov A. A. Razvitiye vozmushcheniy v szhimayemykh potokakh [Development of disturbances in compressible flows]. Novosibirsk, Nauka Publ., 1980. 134 p.
2. Kachanov Yu. S. On the resonant nature of the breakdown of a laminar boundary layer. In: Journal of Fluid Mechanics, 1987, vol. 184, pp. 43–74. DOI: 10.1017/S0022112087002805.
3. Zharov V. A. [On the wave theory of a developed turbulent boundary layer]. In: Uchenyye zapiski TSAGI [Scientific notes of Central Aerohydrodynamic Institute], 1986, vol. XVII, no. 5, pp. 28–38.
4. Dorofeyev F. Ye. [Effect of a change in the sign of the lifting force for power-law bodies of revolution]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika [Bulletin of Moscow Region State University. Series: Physics and Mathematics], 2022, no. 2, pp. 42–50. DOI: 10.18384/2310-7251-2022-2-42-50.
5. Borodulin V. I., Gaponenko V. R., Kachanov Y. S., Meyer D. G. W., Rist U., Lian Q. X., Lee C. B. Late-Stage Transitional Boundary-Layer Structures. Direct Numerical Simulation and Experiment. In: Theoretical and Computational Fluid Dynamics, 2002, vol. 15, pp. 317– 337. DOI: 10.1007/s001620100054.
6. Repik Ye. U., Sosedko Yu. P. Turbulentnyy pogranichnyy sloy. Metodika i rezul'taty eksperimental'nykh issledovaniy [Turbulent boundary layer. Methodology and results of experimental studies]. Moscow, FIZMATLIT Publ., 2007. 312 p.
7. Kosinov A. D., Panina A. V., Kolosov G. L., Semionov N. V., Ermolaev Yu. G. Experiments on relative receptivity of three-dimensional supersonic boundary layer to controlled disturbances and its development. In: EUCASS Proceedings Series, 2013, vol. 5: Progress in Flight Physics, pp. 69–80. DOI: 10.1051/eucass/201305069.
8. Kudryavtsev A. N., Khotyanovskiy D. V. [Direct numerical simulation of transition to turbulence in a supersonic boundary layer]. In: Teplofizika i aeromekhanika [Thermophysics and Aeromechanics], 2015, vol. 22, no. 5, pp. 581–590.
9. Lipatov I. I., Tugazakov R. Ya. [Mechanism of bursting formation in a supersonic gas flow past a narrow flat plate]. In: Prikladnaya mekhanika i tekhnicheskaya fizika [Journal of Applied Mechanics and Technical Physics], 2022, vol. 63, no. 2 (372), pp. 37–47 DOI: 10.15372/PMTF20220204.
10. Lipatov I. I., Tugazakov R. Ya. Generation of Coherent Structures in Supersonic Flow past a Finite-Span Flat Plate. In: Fluid Dynamics, 2015, vol. 50, no 6, pp. 793–799. DOI: 10.1134/S0015462815060095.
11. Kline S. J., Reynolds W. C., Shraub F. A., Runstadler P. W. The structure of turbulent boundary layers. In: Journal of Fluid Mechanics, 1967, vol. 30, iss. 4, pp. 741–773. DOI: 10.1017/S0022112067001740.
12. Cantuwell D. J. Organaized motion in turbulent flow. In: Annual Review of Fluid Mechanics, 1981, vol. 13, pp. 457–515. DOI: 10.1146/annurev.fl.13.010181.002325.
13. Ephraim L. R., Burstein S. Z. Difference methods for the inviscid and viscous equations of a compressible gas. In: Journal of Computational Physics, 1967, vol. 2, iss. 2, pp. 178–196. DOI: 10.1016/0021-9991(67)90033-2.
14. Tugazakov R. Ya. Three-dimensional Тurbulent Supersonic Flow over a Plate. In: Fluid Dynamics, 2019, vol. 54, no. 5, pp. 705–713. DOI: 10.1134/S0015462819050100.
15. Tugazakov R. Ya. [To the theory of separation of a supersonic flow of inviscid gas in problems of gas dynamics]. In: Izvestiya RAN. Mekhanika zhidkosti i gaza [Fluid Dynamics], 2016, no. 5, pp. 118–124. DOI: 10.7868/S0568528116040137.
16. Ostapenko N. A., Simonenko A. M. [Supersonic flow around a v-shaped wing at incidence and yaw]. In: Izvestiya RAN. Mekhanika zhidkosti i gaza [Fluid Dynamics], 2004, no. 1, pp. 97–109.
17. Kuznetsov M. M., Kuleshova Yu. D., Smotrova L. V. [On the increase of the kinetic processes rates in tamm-mott-smith shock wave model]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika [Bulletin of Moscow Region State University. Series: Physics and Mathematics], 2012, no. 2, pp. 108–116.