Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Model kinetic equation of mono- and polyatomic gas mixture

https://doi.org/10.18384/2949-5067-2024-1-56-67

Abstract

The aim of this work was to build a physical and mathematical model of the flows of mixtures of polyatomic gases in the form of a model kinetic equation.  

Methodology. The paper uses methods of the molecular kinetic theory of gases, focused on finding the translational and rotational energies of the components of a gas mixture. To implement the developed model, methods of numerical solution of integral differential equations were used.

Results. The model was tested on the example of a shock wave problem for a mixture of nitrogen and oxygen. A satisfactory agreement with the results of other authors obtained by direct statistical modeling methods is shown.

Research implications. The developed model makes it possible to describe highly nonequilibrium processes in gas mixtures. Such processes include, in particular, the interaction of gas with active surfaces.

About the Authors

Yu. A. Nikitchenko
Moscow Aviation Institute (National Research University)
Russian Federation

Yrii A. Nikitchenko – Dr. Sci. (Phys.-Math.), Prof., Department of Aerodynamics, dynamics and control of aircraft

ulitsa Volokolamskoye shosse 4, Moscow 125993



N. I. Sergeeva
Moscow Aviation Institute (National Research University)
Russian Federation

Natalya I. Sergeeva – Postgraduate Student, Department of Aerodynamics, dynamics and control of aircraf

ulitsa Volokolamskoye shosse 4, Moscow 125993



References

1. Demidov I. V., Kuznetsov M. M., Kuleshova Y. D., Tikhonovets A. V. Analytical theory of high-speed nonequilibrium in a binary mixture of gases with a predominant light component. In: Journal of Physics: Conference Series, 2021, vol. 2056, International Conference “Advanced Element Base of Micro- and Nano-Electronics with Using of ToDate Achievements of Theoretical Physics” (MRSU, 20-23 April 2021, Moscow, Russia), article number 012008. DOI: 10.1088/1742-6596/2056/1/012008.

2. Kuznetsov M. M., Kuleshova Yu. D., Reshetnikova Yu. G., Smotrova L. V. [Occurrence conditions and high-speed overlap effect value in shocked gases'' mixture]. In: Trudy MAI (setevoye nauchnoye izdaniye) [Electronic journal «Trudy MAI»], 2017, no. 95. Available at: https://mai.ru/upload/iblock/96c/Kuznetsov_Kuleshova_Reshetnikova_Smotrova_rus.pdf (accessed: 10.10.2023).

3. Genich A. P., Kulikov S. V., Manelis G. B., Chereshnev S. L. [Distribution of molecular velocities in the front of a shock wave in gas mixtures]. In: Izvestiya Akademii nauk SSSR. Mekhanika zhidkosti i gaza [Fluid Dynamics], 1990, no. 2, pp. 144–150.

4. Kulikov S. V., Ternovaya O. N., Chereshnev S. L. [Specificity of Translational Nonequilibrium in the Shock Wave Front Propagating through a Single-Component Gas]. In: Khimicheskaya fizika [Soviet Journal of Chemical Physics], 1993, vol. 12, no. 3, pp. 340– 342.

5. Kuznetsov M. M., Matveev S. V., Molostvin E. V., Reshetnikova Yu. G., Smotrova L. V. [The Hight Velocity Translation Nonequilibium in Analitical Shock Wave Model in a Gas Mixture]. In: Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical and Chemical Kinetics in Gas Dynamics], 2016, vol. 17, no 1. Available at: http://chemphys.edu.ru/issues/2016-17-1/articles/613/ (accessed: 10.10.2023).

6. Kuznetsov M. M., Kuleshova Yu. D., Smotrova L. V, Reshetnikova Yu. G. [On the maximum effect of high translational nonequilibrium in the shock wave]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika [Bulletin of Moscow Region State University. Series: Physics and Mathematics], 2016, no. 3, pp. 84– 95. DOI: 10.18384/2310-7251-2016-3-84-95.

7. Kulikov S. V. [Translational nonequilibrium of a three-component gas in the front of a shock wave]. In: Izvestiya Rossiyskoy Akademii nauk. Mekhanika zhidkosti i gaza [Fluid Dynamics], 1997, no. 4, pp. 171–178.

8. Raines A. A. Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation. In: European Journal of Mechanics – B/Fluids, 2002, vol. 21, iss. 5, pp. 599–610. DOI: 10.1016/S0997-7546(00)00133-3.

9. Sabouri M., Darbandi M. Numerical study of species separation in rarefied gas mixture flow through micronozzles using DSMC. In: Physics of Fluids, 2019, vol. 31, iss. 4, pp. 042004. DOI: 10.1063/1.5083807.

10. Oguchi H. A kinetic model for a binary mixture and its application to a shock structure. In: Brundin C. L., ed. Rarefied Gas Dynamics. Vol. 1. New York, London, Academic Press, 1967, pp. 745–758.

11. Abe K., Oguchi H. Shock wave structure in binary gas mixture. In: Trilling L., Wachman H. Y., eds. Rarefied Gas Dynamics. Vol. 6. New York, London, Academic Press, 1969, pp. 425–429.

12. Todorova B. N., Steijl R. Derivation and numerical comparison of Shakhov and ellipsoidal statistical kinetic models for a monoatomic gas mixture. In: European Journal of Mechanics – B/Fluids, 2019, vol. 76, pp. 390–402 DOI: 10.1016/j.euromechflu.2019.04.001.

13. Lorenzani S. A microchannel flow application of a linearized kinetic Bhatnagar-GrossKrook-type model for inert gas mixtures with general intermolecular forces. In: Physics of Fluids, 2019, vol. 31, iss. 7, pp. 072001. DOI: 10.1063/1.5098013.

14. Todorova B. N., White C., Steijl R. Modeling of nitrogen and oxygen gas mixture with a novel diatomic kinetic model. In: AIP Advances, 2020, vol. 10, iss. 9, pp. 095218. DOI: 10.1063/5.0021672.

15. Harnett L. M., Muntz E. P. Experimental investigation of normal shock wave velocity distribution functions in mixtures of Argon and Helium. In: Physics of Fluids, 1972, vol. 15, iss. 4, pp. 565–572. DOI: 10.1063/1.1693949.

16. Center R. E. Measurements of shock-wave structure in helium-argon mixtures. In: Physics of Fluids, 1967, vol. 10, iss. 8, pp. 1777–1784. DOI: 10.1063/1.1762357.

17. Bochkarev A. A., Rebrov A. K., Timoshenko N. I. [Structure of a shock wave in an Ar–He mixture]. In: Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya tekhnicheskikh nauk [Proceedings of the Siberian Branch of the USSR Academy of Sciences. Engineering Science Series], 1976, no. 3, iss. 1, pp. 76–80.

18. Kosuge S., Kuo H.-W., Aoki K. A kinetic model for a polyatomic gas with temperaturedependent specific heats and its application to shock-wave structure. In: Journal of Statistical Physics, 2019, vol. 177, pp. 209–251. DOI: 10.1007/s10955-019-02366-5.

19. Wu J., Peng A., Li Z., Jiang X. Kinetic models for thermodynamic non-equilibrium effects of polyatomic gases and preliminary application in gas-kinetic unified algorithm. In: AIP Conference Proceedings, 2019, vol. 2132, iss. 1, pp. 060006. DOI: 10.1063/1.5119546.

20. Rykov V. A. [Model kinetic equation for gas with rotational degrees of freedom]. In: Izvestiya Akademii nauk SSSR. Mekhanika zhidkosti i gaza [Fluid Dynamics], 1975, no. 6, pp. 107–115.

21. Nikitchenko Yu. A. [Model kinetic equation of polyatomic gases]. In: Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Computational Mathematics and Mathematical Physics], 2017, vol. 57, no. 11, pp. 1882–1894. DOI: 10.7868/S0044466917110114.

22. Nikitchenko Yu. A., Popov S. A., Sergeeva N. I. [System of model kinetic equations for a multicomponent gas]. In: Teplofizika vysokikh temperature [High Temperature], 2023, vol. 61, no. 5, pp. 736–743. DOI: 10.31857/S0040364423050113.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (B)    
Indexing metadata ▾

Review

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)