Radiation of acoustic waves from a flat channel, approximate solution
https://doi.org/10.18384/2949-5067-2023-4-19-33
Abstract
Aim: to consider the process of emitting a sound wave (main mode) from a semi-infinite channel without a flange when the air inside and outside the channel is at rest, to develop a procedure for approximating the solution, which allows us to obtain the reflection and transformation coefficients of the main mode wave on the channel slice, as well as a directional pattern and spatial distribution of acoustic pressure outside the channel, and compare it with an accurate analytical solution.
Methodology. The solution of the problem is expressed in terms of the eigenfunctions of the continuous and discrete spectrum problem. The conditions of continuity of the solution on the channel slice are used as closure conditions.
Results. Approximate characteristics of sound emission from a channel without flanges are determined, bypassing the Wiener – Hopf procedure.
Research implications. The proposed procedure simplifies obtaining a solution compared to the Wiener – Hopf method, which, in the case of gas moving in the channel, makes it possible to link the sound generation process with the characteristics of the boundary layer on the channel walls.
About the Author
V. A. ZharovRussian Federation
Vladimir A. Zharov – Dr. Sci. (Phys.-Math.), Leading Researcher
References
1. Vainshtein L. A. [A rigorous solution to the problem of a flat waveguide with an open end]. In: Izvestiya Akademii nauk SSSR. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 1948, vol. 12, no. 2, pp. 144–165.
2. Noble B. Primeneniye metoda Vinera – Khopfa dlya resheniya differentsial'nykh uravneniy v chastnykh proizvodnykh [Application of the Wiener–Hopf method for solving partial differential equations]. Moscow, Inostrannaya literatura Publ., 1962. 279 s.
3. Zharov V. A., Khlopkov Yu. I., Chernyshev S. L. [Diffraction of sound waves from a channel into a gas at rest. Exact solutions]. In: Trudy MFTI [Proceedings of Moscow Institute of Physics and Technology (National Research University)], 2010, vol. 2, no. 3 (7), pp. 152–157.
4. Munt R. M. The interaction of sound with a subsonic jet issuing from a semi-infinite cylindrical pipe. In: Journal of Fluid Mechanics, 1977, vol. 83, iss. 4, pp. 609–640. DOI: 10.1017/S0022112077001384.
5. Munt R. M. Acoustic Transmission Properties of a Jet Pipe with Subsonic Jet Flow: I. The Cold Jet Reflection Coefficient. In: Journal of Sound and Vibration, 1990, vol. 142, iss. 3, pp. 413–436. DOI: 10.1016/0022-460X(90)90659-N.
6. Gorazd Ł., Jurkiewicz J., Snakowska A. Experimental Verification of the Theoretical Model of Sound Radiation from an Unflanged Duct with Low Mean Flow. In: Archives of Acoustics, 2012, vol. 37, no. 2, pp. 227–236. DOI: 10.2478/v10168-012-0030-7.
7. Tolstykh A. I., Lipavskii M. V., Chigerev E. N. DNS of thin shear instability by ninth-order multioperators-based schemes. In: International Journal of Computing Science and Mathematics, 2007, vol. 1, iss. 2-4, pp. 432–443. DOI: 10.1504/IJCSM.2007.016544.
8. Grassucci D., Camussi R., Kerhervé F., Jordan P., Grizzi S. Using Wavelet transforms and Linear Stochastic Estimation to study nearfield pressure and turbulent velocity signatures in free jets. In: AIAA 2010-3954. 16th AIAA/CEAS Aeroacoustics Conference. Session: AA36: Jet Noise – Experimental Studies II (07 June 2010 – 09 June 2010, Stockholm, Sweden), 2010, pp. 3954. DOI: 10.2514/6.2010-3954.
9. Salven H., Grosch C. E. The continuous spectrum of Orr-Sommerfeld equation. Part 2. Eigenfunction expansions. In: Journal of Fluid Mechanic, 1981, vol. 104, pp. 445–465. DOI: 10.1017/S0022112081002991.
10. Schlichting G. Teoriya pogranichnogo sloya [Theory of the boundary layer]. Moscow, Nauka Publ., 1974. 711 p.
11. Jackson J. Klassicheskaya elektrodinamika [Classical electrodynamics]. Moscow, Mir Publ., 1965. 702 p.
12. Kopiev V. F., Shur M. L. [Azimuthal components of turbulent jet sound field: measurement results and their implementation for validation of modern noise computation techniques]. In: Uchenyye zapiski TSAGI [TsAGI Science Journal], 2010, vol. 41, no. 1, pp. 5–12.
13. Landau L. D., Lifshits Ye. M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 621 p.
14. Gradshtein I. S., Ryzhik I. M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. Moscow, Nauka Publ., Fizmatlit Publ., 1971. 1108 p.