Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Molecular dynamic of the adsorption and mobility of biomolecules on graphene sheets

https://doi.org/10.18384/2949-5067-2023-4-49-63

Abstract

Aim. To reveal the differences in the dynamics of deoxyribonucleic acid (DNA) and its stabilizing protein on the surface of graphene, graphene oxide and in solution.

Methodology. Using the method of molecular dynamics in the all atom approximation, calculations of DNA bound to the DNA-stabilizing protein DPS (DNA-binding protein from starved cells) on the surface of graphene, graphene oxide and in solution were carried out.

Results. Based on the studies performed, it was shown that graphene substrates can affect the dynamics of proteins and DNA. In particular, they can limit the mobility of free protein regions, hindering their interaction with other molecules, and adsorb DNA, changing the structure of DPS – DNA complexes.

Research implications. The obtained data are of practical interest for researchers of the structure of biological molecules and their complexes on the surface of graphene substrates. Also, the data can be used to create bioinspired nanomaterials with desired properties. 

About the Authors

E. V. Tereshkin
N. N. Semenov Federal Research Center for Chemical Physics
Russian Federation

Eduard V. Tereshkin – Researcher, Department of Structure of Matter

ulitsa Kosygina 4, Moscow 119991



K. B. Tereshkina
N. N. Semenov Federal Research Center for Chemical Physics
Russian Federation

Ksenia B. Tereshkina – Cand. Sci. (Phys.-Math.), Senior Researcher, Department of Structure of Matter

ulitsa Kosygina 4, Moscow 119991



Yu. F. Krupyanskii
N. N. Semenov Federal Research Center for Chemical Physics
Russian Federation

Yurii F. Krupyanskii – Dr. Sci. (Phys.-Math.), Departmental Head, Department of Structure of Matter

ulitsa Kosygina 4, Moscow 119991

   


References

1. Lomonossoff G. P., Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. In: Advances in Virus Research, 2018, vol. 102, pp. 149– 176. DOI: 10.1016/bs.aivir.2018.06.003.

2. Nepal D., Kang S., Adstedt K. M., Kanhaiya K., Bockstaller M.R., Brinson L. C., Buehler M. J., et al. Hierarchically structured bioinspired nanocomposites. In: Nature Materials, 2023, vol. 22, no. 1, pp. 18–35. DOI: 10.1038/s41563-022-01384-1.

3. Wu G., Hui X., Hu L., Bai Y., Rahaman A., Yang X.–F., Chen C. Recent advancement of bioinspired nanomaterials and their applications: A review. In: Frontiers in Bioengineering and Biotechnology, 2022, vol. 10, pp. 952523. DOI: 10.3389/fbioe.2022.952523.

4. Zhang D, Wang Y. Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications. In: International Journal of Molecular Sciences, 2019, vol. 20, no. 12, pp. 3054. DOI: 10.3390/ijms20123054.

5. Gupta N. K., Karuppannan S. K., Pasula R. R., Vilan A., Martin J., Xu W., May E. M., et al. Temperature-Dependent Coherent Tunneling across Graphene-Ferritin Biomolecular Junctions. In: ACS Applied Materials & Interfaces, 2022, vol. 14, no. 39, pp. 44665–44675. DOI: 10.1021/acsami.2c11263.

6. Inoue I., Watanabe K., Yamauchi H., Ishikawa Y., Yasueda H., Uraoka Y., Yamashita I. Biological Construction of Single-Walled Carbon Nanotube Electron Transfer Pathways in Dye-Sensitized Solar Cells. In: ChemSusChem, 2014, vol. 7, iss. 10, pp. 2805–2810. DOI: 10.1002/cssc.201402514.

7. Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M. The crystal structure of DPS, a ferritin homolog that binds and protects DNA. In: Nature Structural & Molecular Biology, 1998, vol. 5, no. 4, pp. 294–303. DOI: 10.1038/nsb0498-294.

8. Kamitake H., Uenuma M., Okamoto N., Horita M., Ishikawa Y., Yamashita I., Uraoka Y. Floating gate memory with charge storage dots array formed by DPS protein modified with site–specific binding peptides. In: Nanotechnology, 2015, vol. 26, no. 19, pp. 195201. DOI: 10.1088/0957-4484/26/19/195201.

9. Orban K., Finkel S. E. Dps is a Universally Conserved Dual-Action DNA-Binding and Ferritin Protein. In: Journal of Bacteriology, 2022, vol. 204, no. 5, e0003622. DOI: 10.1128/jb.00036-22.

10. Tereshkin E. V., Loiko N. G., Tereshkina K. B., Kovalenko V. V., Krupyanskii Y. F. Possible Mechanisms of 4-Hexylresorcinol Influence on DNA and DNA-DPS Nanocrystals Affecting Stress Sustainability of Escherichia coli. In: Russian Journal of Physical Chemistry B: Focus on Physics, 2022, vol. 16, no. 4, pp. 726–737. DOI: 10.1134/S1990793122040285.

11. Yamashita I. Biological path for functional nanostructure fabrication and nanodevices. In: Surface Innovations, 2016, vol. 4, iss. 3, pp. 111–120. DOI: 10.1680/jsuin.16.00015.

12. Abbondanzieri E. A., Meyer A. S. More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. In: Current Genetics, 2019, vol. 65, pp. 691–694. DOI: 10.1007/s00294-018-00927-x.

13. Calhoun L., Kwon Y. Structure, function and regulation of the DNA-binding protein DPS and its role in acid and oxidative stress resistance in Escherichia coli: a review. In: Journal of Applied Microbiology, 2011, vol. 110, iss. 2, pp. 375–386. DOI: 10.1111/j.13652672.2010.04890.x.

14. Battesti A., Majdalani N., Gottesman S. The RpoS-mediated general stress response in Escherichia coli. In: Annual Review of Microbiology, 2011, vol. 65, pp. 189–213. DOI: 10.1146/annurev-micro-090110-102946.

15. Algu K., Choi V. S. C., Dhami R. S., Duncan D. A. K. DPS confers protection of DNA sequence integrity in UV-irradiated Escherichia coli. In: Journal of Experimental Microbiology and Immunology (JEMI), 2007, vol. 11. pp. 60–65.

16. Tereshkin E., Tereshkina K., Loiko N., Chulichkov A., Kovalenko V., Krupyanskii Yu. Interaction of deoxyribonucleic acid with deoxyribonucleic acid-binding protein from starved cells: cluster formation and crystal growing as a model of initial stages of nucleoid biocrystallization. In: Journal of Biomolecular Structure and Dynamics, 2019, vol. 37, iss. 10, pp. 2600–2607. DOI: 10.1080/07391102.2018.1492458.

17. Loiko N., Danilova Y., Moiseenko A., Kovalenko V., Tereshkina K., Tutukina M., ElRegistan G., Sokolova O., Krupyanskii Y. Morphological peculiarities of the DNA-protein complexes in starved Escherichia coli cells. In: PLoS One, 2020, vol. 15(10): e0231562. DOI: 10.1371/journal.pone.0231562.

18. Kovalenko V., Popov A., Santoni G., Loiko N., Tereshkina K., Tereshkin E., Krupyanskii Y. Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps. In: Acta Crystallographica Section F. Structural Biology Communications, 2020, vol. 76, iss. 11, pp. 568–576. DOI: 10.1107/S2053230X20012571.

19. Moiseenko A., Loiko N., Tereshkina K., Danilova Y., Kovalenko V., Chertkov O., Feofanov A. V., Krupyanskii Y. F., Sokolova O. S. Projection structures reveal the position of the DNA within DNA-Dps Co-crystals. In: Biochem Biochemical and Biophysical Research Communications, 2019, vol. 517, iss. 3, pp. 463–469. DOI: 10.1016/j.bbrc.2019.07.103.

20. Tereshkin E. V., Tereshkina K. B., Krupyanskii Yu. F. Predicting Binding Free Energies for DPS Protein-DNA complexes and Crystals Using Molecular Dynamics. In: Supercomputing Frontiers and Innovations, 2022, vol. 9, no. 2. Special Issue on Supercomputing in Computational Biology and Molecular Modeling of Living Systems, pp. 33–45. DOI: 10.14529/jsfi220203.

21. Ceci P., Chiancone E., Kasyutich O., Bellapadrona G., Castelli L., Fittipaldi M., Sangregorio C., Innocenti C., Gatteschi D. Synthesis of Iron Oxide Nanoparticles in Listeria innocua Dps (DNA-binding Protein from Starved Cells): a study with the wildtype protein and a catalytic centre mutant. In: Chemistry – A European Journal, 2010, vol. 16, iss. 2, pp. 709–717. DOI: 10.1002/chem.200901138.

22. Guo M., Gao M., Liu J., Xu N., Wang H. Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. In: Biotechnology Advances, 2022, vol. 61, pp. 108057. DOI: 10.1016/j.biotechadv.2022.108057.

23. Casabianca L. B., Shaibat M. A., Cai W. W., Park S., Piner R., Ruoff R. S., Ishii Y. NMRbased structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. In: Journal of the American Chemical Society, 2010, vol. 132, no. 16, pp. 5672–5676. DOI: 10.1021/ja9030243.

24. Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. In: SoftwareX, 2015, vol. 1–2, pp. 19–25. DOI: 10.1016/j.softx.2015.06.001.


Supplementary files

Review

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)