Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

TIME EVOLUTION OF TUNNELING OF BOSE-CONDENSED ATOMS IN A FOUR-WELL TRAP UNDER THE CONDITION OF THE INITIAL EQUILOCATION OF THE WELLS OF THE TAP

Abstract

Aim of this work is a theoretical study of the time evolution of Bose-condensed atoms in a four-well trap

Methodology. Theoretical studies of the interaction Hamiltonian describing the time evolution of Bose-condensed atoms in a four-well trap under linear tunneling conditions have been carried out

Results. Analytical solutions are obtained for a system of differential equations describing the time evolution of Bose-condensed atoms in a four-well trap.

Research implications. The time evolution of Bose-condensed atoms in a four-well trap is determined by the initial phase difference, which makes it possible to phase-control the process of Bose-atom tunneling in traps

About the Authors

Olga Vasilieva
Transnistrian State University named after T.G. Shevchenko
Moldova, Republic of


Anna Zingan
Transnistrian State University named after T.G. Shevchenko
Moldova, Republic of


References

1. Khadzhi P. I., Vasilieva O. V. Coherent dynamics of Bose-condensed atoms in a double-well trap // Journal of Nanoelectronics and Optoelectronics. 2011. Vol. 6. P. 433–451.

2. Jezek D.M., Capuzzi P., Cataldo H.M. Two-mode effective interaction in a double-well condensate // Phys. Rev. A. 2013. Vol. 87. P. 053625.

3. Adriazola J., Goodman R. H., Kevrekidis P. G. Efficient manipulation of Bose-Einstein condensates in a double-well potential. 2022. arXiv:2206.01858v2.

4. Holthaus M. Towards coherent control of a Bose-Einstein in a double well // Phys. Rev. A. 2001. Vol. 64. P. 011601(R).

5. Ma D., Jia C. Square wave oscillation of soliton in double-well potential trapped BEC. 2019. arXiv:1903.00141.

6. Saha A.K., Adhikary K., Mal S., Dastidar K.R., Deb B. The effects of trap-confinement and interatomic interaction on Josephson effects and macroscopic quantum self-trapping for a Bose-Einstein condensate // J. of Phys. B: At. Mol. Opt. Phys. 2019. Vol. 52. P. 155301.

7. Dastidar K.R., Gupta M. Dynamics of dipolar atom-molecular BEC in a double well potential: effect of atom-molecular coherent coupling. 2021. arXiv:2106.12274v1.

8. Васильева О.Ф., Зинган А.П. Временная эволюция бозе-конденсированных атомов в трехъямной симметричной цепочной ловушке // Вестник Московского государственного университета. Серия: Физика-Математика. 2021. №1, С. 27-38. DOI: 10.18384/2310-7251-2021-1-27-38.

9. Васильева О.Ф., Зинган А.П. Временная эволюция бозе-конденсированных атомов в трехъямной ловушке, при условии отличной от нуля начальной заселенности первой ямы // Вестник Московского государственного университета. Серия: Физика-Математика. 2022. №2, С. 28-41. DOI: 10.18384/2310-7251-2022-2-28-41.

10. Wang B., Zhang H., Chen Y., Tan L. Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system // Eur. Phys. J. D. 2017. Vol. 71. P. 56.

11. Dey A., Cohen D., Vardi A. Adiabatic Passage through Chaos // Phys. Rev. Lett. 2018. Vol. 121. P. 250405.

12. Tonel A.P., Ymai L.H., Wittmann K., Foerster A., Links J. Entangled states of dipolar bosons generated in a triple-well potential // SciPost Phys. Core. 2020. Vol. 2. P. 003.

13. Rubio J. L., Ahufinger V., Busch Th., Mompart J. Optimal conditions for spatial adiabatic passage of a Bose-Einstein condensate // Phys. Rev. 2016. Vol. A 94. P. 053606.

14. Stickney J.A., Anderson D.Z., Zozulya A.A. Transistor like behavior of a Bose-Einstein condensate in a triple-well potential // Phys. Rev. A. 2007. Vol. 75. P. 013608.

15. Wilsmann K.W., Ymai L.H., Tonel A.P., Links J., Foerster A. Control of tunneling in an atomtronic switching device // Commun Phys. 2018. Vol. 1. P. 91.

16. Schlagheck P., Malet F., Cremon J.C., Reimann S.M. Transport and interaction blockade of cold bosonic atoms in a triple-well potential //New Journal of Physics. 2010. Vol. 12. P. 065020.

17. Karmakar S., Keshavamurthy S. Arnold web and dynamical tunneling in a four-site Bose-Hubbard model. 2021. arXiv:2106.10215v2.

18. Khripkov C., Vardi A., Coher D. Semiclassical theory of strong localization for quantum thermalization // Phys. Rev. E. 2018. Vol. 97. P. 022127.

19. Javanainen J. Optical detection of the relative phase between two Bose-Einstein condensates // Phys. Rev. A54, R4629 (1996).

20. Kumar A., Dubessy R., Badr T., De Rossi C., De Goer M., Longchambon L., Perrin H. Producing superfluid circulation states using phase impriting //Phys. Rev. A. 2018. Vol. 97. P. 043615.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (215KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (207KB)    
Indexing metadata ▾

Review

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)