TIME EVOLUTION OF TUNNELING OF BOSE-CONDENSED ATOMS IN A FOUR-WELL TRAP UNDER THE CONDITION OF THE INITIAL EQUILOCATION OF THE WELLS OF THE TAP
Abstract
Aim of this work is a theoretical study of the time evolution of Bose-condensed atoms in a four-well trap
Methodology. Theoretical studies of the interaction Hamiltonian describing the time evolution of Bose-condensed atoms in a four-well trap under linear tunneling conditions have been carried out
Results. Analytical solutions are obtained for a system of differential equations describing the time evolution of Bose-condensed atoms in a four-well trap.
Research implications. The time evolution of Bose-condensed atoms in a four-well trap is determined by the initial phase difference, which makes it possible to phase-control the process of Bose-atom tunneling in traps
About the Authors
Olga VasilievaMoldova, Republic of
Anna Zingan
Moldova, Republic of
References
1. Khadzhi P. I., Vasilieva O. V. Coherent dynamics of Bose-condensed atoms in a double-well trap // Journal of Nanoelectronics and Optoelectronics. 2011. Vol. 6. P. 433–451.
2. Jezek D.M., Capuzzi P., Cataldo H.M. Two-mode effective interaction in a double-well condensate // Phys. Rev. A. 2013. Vol. 87. P. 053625.
3. Adriazola J., Goodman R. H., Kevrekidis P. G. Efficient manipulation of Bose-Einstein condensates in a double-well potential. 2022. arXiv:2206.01858v2.
4. Holthaus M. Towards coherent control of a Bose-Einstein in a double well // Phys. Rev. A. 2001. Vol. 64. P. 011601(R).
5. Ma D., Jia C. Square wave oscillation of soliton in double-well potential trapped BEC. 2019. arXiv:1903.00141.
6. Saha A.K., Adhikary K., Mal S., Dastidar K.R., Deb B. The effects of trap-confinement and interatomic interaction on Josephson effects and macroscopic quantum self-trapping for a Bose-Einstein condensate // J. of Phys. B: At. Mol. Opt. Phys. 2019. Vol. 52. P. 155301.
7. Dastidar K.R., Gupta M. Dynamics of dipolar atom-molecular BEC in a double well potential: effect of atom-molecular coherent coupling. 2021. arXiv:2106.12274v1.
8. Васильева О.Ф., Зинган А.П. Временная эволюция бозе-конденсированных атомов в трехъямной симметричной цепочной ловушке // Вестник Московского государственного университета. Серия: Физика-Математика. 2021. №1, С. 27-38. DOI: 10.18384/2310-7251-2021-1-27-38.
9. Васильева О.Ф., Зинган А.П. Временная эволюция бозе-конденсированных атомов в трехъямной ловушке, при условии отличной от нуля начальной заселенности первой ямы // Вестник Московского государственного университета. Серия: Физика-Математика. 2022. №2, С. 28-41. DOI: 10.18384/2310-7251-2022-2-28-41.
10. Wang B., Zhang H., Chen Y., Tan L. Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system // Eur. Phys. J. D. 2017. Vol. 71. P. 56.
11. Dey A., Cohen D., Vardi A. Adiabatic Passage through Chaos // Phys. Rev. Lett. 2018. Vol. 121. P. 250405.
12. Tonel A.P., Ymai L.H., Wittmann K., Foerster A., Links J. Entangled states of dipolar bosons generated in a triple-well potential // SciPost Phys. Core. 2020. Vol. 2. P. 003.
13. Rubio J. L., Ahufinger V., Busch Th., Mompart J. Optimal conditions for spatial adiabatic passage of a Bose-Einstein condensate // Phys. Rev. 2016. Vol. A 94. P. 053606.
14. Stickney J.A., Anderson D.Z., Zozulya A.A. Transistor like behavior of a Bose-Einstein condensate in a triple-well potential // Phys. Rev. A. 2007. Vol. 75. P. 013608.
15. Wilsmann K.W., Ymai L.H., Tonel A.P., Links J., Foerster A. Control of tunneling in an atomtronic switching device // Commun Phys. 2018. Vol. 1. P. 91.
16. Schlagheck P., Malet F., Cremon J.C., Reimann S.M. Transport and interaction blockade of cold bosonic atoms in a triple-well potential //New Journal of Physics. 2010. Vol. 12. P. 065020.
17. Karmakar S., Keshavamurthy S. Arnold web and dynamical tunneling in a four-site Bose-Hubbard model. 2021. arXiv:2106.10215v2.
18. Khripkov C., Vardi A., Coher D. Semiclassical theory of strong localization for quantum thermalization // Phys. Rev. E. 2018. Vol. 97. P. 022127.
19. Javanainen J. Optical detection of the relative phase between two Bose-Einstein condensates // Phys. Rev. A54, R4629 (1996).
20. Kumar A., Dubessy R., Badr T., De Rossi C., De Goer M., Longchambon L., Perrin H. Producing superfluid circulation states using phase impriting //Phys. Rev. A. 2018. Vol. 97. P. 043615.
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Other | |
Download
(215KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Other | |
Download
(207KB)
|
Indexing metadata ▾ |