Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Physical mechanism of selective exposure of short-pulse laser radiation on micropores in opaque material

https://doi.org/10.18384/2949-5067-2023-3-43-56

Abstract

   Aim. Investigation of the physical mechanism of the selective effect of laser radiation on the micropore system in the surface layer of an opaque material with high thermal conductivity.

   Methodology. Theoretical study of the specifics of heating the surface for a material with a system of micropores using a nonlinear differential equation of thermal conductivity by the finite element method.

   Results. A physical mechanism for the selective effect of short-pulse laser radiation on micropores in an opaque material is proposed. It is established that under conditions of impulsed laser heating of the material, the specificity of the propagation of isotherms significantly depends on the configuration of the micropore system. For the upper micropore is realized speeded heating of the material above the micropore and slowed heating under the micropore. The specific heating pattern of the material, supplemented by the impact of the shock wave, will stimulate the movement of the material in the direction of the micropore and its partial/complete healing.

   Research implications. The results obtained expand the understanding of the physics of selective laser healing of micropores.

About the Authors

I. Ushakov
University of Science and Technology MISIS
Russian Federation

Ivan V. Ushakov, Dr. Sci. (Engineering), Prof.

Department of Physics

119049

Leninskiy Prospekt 4 build. 1

Moscow



I. Safronov
University of Science and Technology MISIS
Russian Federation

Ivan S. Safronov, PhD (Phys.-Math.), Assoc. Prof.

Department of Physics

119049

Leninskiy Prospekt 4 build. 1

Moscow



References

1. Gorbunov A. V. Dendritic melting in modulated laser beam. In: Europhysics Letters, 1993, vol. 24, no. 9, pp. 773–778. DOI: 10.1209/0295-5075/24/9/013.

2. Simonov Yu. V., Ushakov I. V. [Mechanical properties of surface structures of titanium alloy vt9 after repeated local processing with nanosecond laser pulses]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-Matematika [Bulletin of the Moscow Region State University. Series: Physics and Mathematics], 2020, no. 2, pp. 19–35. DOI: 10.18384/2310-7251-2020-2-19-35.

3. Mirzoev F. Kh., Panchenko V. Ya., Shelepin L. A. [Laser control of processes in solids]. In: Uspekhi fizicheskikh nauk [Physics-Uspekhi (Advances in Physical Sciences)], 1996, vol. 166, no. 1, pp. 3–23. DOI: 10.3367/ufnr.0166.199601a.0003.

4. Kaputkina L. M., Smarygina I. V., Kindop V. E., Kaputkin D. Ye. [Laser welding of new austenitic cryogenic corrosion-resistant steels alloyed with nitrogen]. In: Chornyye metally [Chernye Metally. Stahl und Eisen], 2021, no. 7, pp. 56–62. DOI: 10.17580/chm.2021.07.05.

5. Shinkin V. N. [Preliminary straightening of steel strip]. In: Chornyye metally [Chernye Metally. Stahl und Eisen], 2018, no. 5, pp. 34–40.

6. Ushakov I. V., Safronov I. S. Directed changing properties of amorphous and nanostructured metal al-loys with help of nanosecond laser impulses. In: CIS Iron and Steel Review, 2021, vol. 22, pp. 77–81. DOI: 10.17580/cisisr.2021.02.14.

7. Safronov I. S., Ushakov A. I. Targeted alternation in properties of solid amorphous-nanocrystalline material in exposing to nanosecond laser radiation. In: Defect and Diffusion Forum, 2021, vol. 410, pp. 469–474. DOI: 10.4028/www.scientific.net/DDF.410.469.

8. Dubrovsky V. A., Zabenkov I. V., Karpocheva E. P., Torbin S. O. [Identification and counting of natural donor blood erythrocytes of human by digital optical microscopy method using spectrally filtered illumination]. In: Optika i spektroskopiya [Optics and Spectroscopy], 2021, vol. 129, no. 3, pp. 327–341. DOI: 10.21883/OS.2021.03.50660.208-20.

9. Hvozdara L., Gianordoli S., Strasser G., Schrenk W., Unterrainer K., Gornik E., Murthy C. S. S., Kraft M., Pustogow V., Mizaikoff B., Inberg A., Croitoru N. Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers. In: Applied Optics, 2000, vol. 39, iss. 36, pp. 6926–6930. DOI: 10.1364/AO.39.006926.

10. Wang Z., Ummethala R., Singh N., Tang S., Suryanarayana C., Eckert J., Prashanth K. G. Selective Laser Melting of Aluminum and Its Alloys. In: Materials, 2020, vol. 13, iss. 20, pp. 4564. DOI: 10.3390/ma13204564.

11. Deng J., Chen C., Zhang W., Li Y., Li R., Zhou K. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting. In: Materials, 2020, vol. 13, iss. 19, pp. 4423. DOI: 10.3390/ma13194423.

12. Kaputkin D. E., Duradji V. N., Kaputkina N. A. Plasma electrolytic processing of bimetals at the anodic process. In: Letters on Materials, 2021, vol. 11, pp. 433–437. DOI: 10.22226/2410-3535-2021-4-433-437.

13. Khairallah S. A., Anderson A. T., Rubenchik A., King W. E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. In: Acta Materialia, 2016, vol. 108 (16), pp. 36–45. DOI: 10.1016/j.actamat.2016.02.014.

14. Prashanth K. G., Scudino S. Quasicrystallyne composites by additive manufacturing. In: Key Engineering Materials, 2019, vol. 818, pp. 72–76. DOI: 10.4028/www.scientific.net/KEM.818.72.

15. Shinkin V. N. Mekhanika sploshnykh sred dlya metallurgov [Mechanics of continuous media for metallurgists]. Moscow, MISiS Publ., 2014. 628 p.

16. Inogamov N. A., Petrov Yu. V., Khokhlov V. A., Zhakhovsky V. V. [Laser ablation: physical concepts and applications (review)]. In: Teplofizika vysokikh temperatur [High Temperature], 2020, vol. 58, no. 4, pp. 689–706. DOI: 10.31857/S0040364420040043.

17. Guskov S. Yu., Borodzyuk S., Kalal M., Kasperchik A., Kralikova B., Krouski E., Limpoukh I., Mashek K. , Pisarczyk T., Pisarczyk P., Pfeiffer M., Rohlena K., Skala J., Ullschmid J. [Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse]. In: Kvantovaya elektronika [Quantum Electronics], 2004, vol. 34, no 11, pp. 989–1003. DOI: 10.1070/QE2004v034n11ABEH002695.

18. Alimov A., Zabelyan D., Burlakov I., Korotkov I., Gladkov Y. Simulation of Deformation Behavior and Microstructure Evolution during Hot Forging of TC11 Titanium Alloy. In: Defect and Diffusion Forum, 2018, vol. 385, pp. 449–454. DOI: 10.4028/www.scientific.net/DDF.385.449.

19. Ilyin A. A. Kolachev B. A., Polkin I. S. Titanovyye splavy. Sostav, struktura, svoystva. Spravochnik [Titanium alloys. Composition, structure, properties. Directory]. Moscow, VILS – MATI Publ., 2009. 520 p.


Supplementary files

Review

Views: 100


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)