A simple model of the mechanism for the generation of air vortices in the atmosphere
https://doi.org/10.18384/2310-7251-2023-2-6-19
Abstract
Aim. We consider the simplest model of point motion in a non-inertial coordinate system, which explains the formation of vortices in the atmosphere.
Procedure and methods. The given model is analytically solved, and the results and average parameters of real cyclones and anticyclones are assessed.
Results. It follows from the obtained solution that the trajectory has the form of a spiral, whose twisting direction depends on the directions of the Coriolis force and the speed of the point, which is associated with the location of the region of the phenomenon formation relative to the Earth hemispheres (northern, clockwise; and southern, counterclockwise). The dependence of the solution on the formulation of boundary and initial conditions is considered. It is shown that in the mathematical formulation of problems of this kind, difficulties arise with the introduction of boundary and initial conditions associated with a singularity at the zero point. The proposed model and dimensional considerations make it possible to estimate the average sizes of cyclones and anticyclones.
Research implications. The theoretical significance lies in the analytical substantiation of the connection between the motion of a point in a non-inertial frame of reference and the occurrence of vortices in the atmosphere.
About the Authors
I. N. AlievRussian Federation
Ismail Novruz oglu Aliev – Dr. Sci. (Phys.-Math.), Prof., Department of Physics
ul. Vtoraya Baumanskaya 5, Moscow 105005
R. E. Lyatifov
Russian Federation
Roman Eynulla oglu Lyatifov – Student, Department of Fundamental Sciences
ul. Vtoraya Baumanskaya 5, Moscow 105005
References
1. Gill A. Atmosphere‒ocean dynamics. New York. Acad. Press, 1982. 662 p.
2. Frank W. M. The structure and energetics of the tropical cyclone I. Storm structure. In: Monthly Weather Review, 1977, vol. 105, iss. 9, pp. 1119–1135. DOI: 10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.
3. Ooyama K. V. Conceptual evolution of the theory and modeling of the tropical cyclone. In: Journal of the Meteorological Society of Japan. Ser. II, 1982, vol. 60, iss. 1, pp. 369–380. DOI: 10.2151/jmsj1965.60.1_369.
4. Emanuel K. A. The finite-amplitude nature of tropical cyclogenesis. In: Journal of the Atmospheric Sciences, 1989, vol. 46, no. 22, pp. 3431–3456. DOI: 10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.
5. Emanuel K. A. The theory of hurricanes. In: Annual Review of Fluid Mechanics, 1991, vol. 23, pp. 179–196. DOI: 10.1146/annurev.fl.23.010191.001143.
6. Chan J. C. L. The physics of tropical cyclone motion. In: Annual Review of Fluid Mechanics, 2005, vol. 37 (1), pp. 99–128. DOI: 10.1146/annurev.fluid.37.061903.175702.
7. Perevezentsev Yu. P., Mokhov I. I., Yeliseyev A. V. Teoriya obshchei tsirkulyatsii atmosfery [Theory of general circulation of the atmosphere]. Kazan. Kazan University Publ., 2013. 224 p.
8. Pogosyan Kh. P. Obshchaya tsirkulyatsiya atmosfery [General Atmospheric Circulation]. Moscow, Gidrometeoizdat Publ., 1972. 394 p.
9. Luchkov B. [Is it possible to tame hurricanes?]. In: Nauchnaya sessiya MIFI-2005. T. 7: Astrofizika i kosmonavtika. Matematicheskie metody. Uskoritel'naya tekhnika [Scientific session MEPhI-2005. Vol. 7: Astrophysics and astronautics. Mathematical methods. Accelerating technology]. Moscow, MEPhI Publ., 2005, pp. 62–63.
10. Permyakov M. S. [Necessary conditions for the development of a tropical cyclone]. In: Meteorologiya i gidrologiya [Meteorology and Hydrology], 1992, no. 7, pp. 54–60.
11. Melnikov V. P., Smulsky I. I. [Mechanisms of atmospheric vortices]. In: Kriosfera Zemli [Cryosphere of the Earth], 1997, vol. 1, no. 1, pp. 87–96.
12. Kochin N. E., Kibel I. A., Roze I. V. Teoreticheskaya gidromekhanika [Theoretical Hydromechanics]. Moscow, GIFML Publ., 1963. 584 p.
13. Bjerkness V. Über einer hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres. In: Kongliga Svenska Vetenskaps-Academiens Nya Handlingar, 1898, Bd. 31, no. 4, pp. 1–35.
14. Thorpe A. J.,Volkert H., Ziemianski M. J. The Bjerknes' circulation theorem. A historical Perspective. In: Bulletin of the American Meteorological Society, 2003, vol. 84, iss. 4, pp. 471–480. DOI: 10.1175/BAMS-84-4-471.
15. Kamke E. Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, Leipzig, B. G. Teubner, 1977.
16. Aliev I. N. Termodinamika i elektrodinamika sploshnykh sred [Thermodynamics and electrodynamics of continuous media]. Moscow, Bauman Moscow State Technical University Publ., 2018. 406 p.
17. Zhukovsky N. E. Teoreticheskie osnovy vozdukhoplavaniya [Theoretical foundations of aeronautics]. Moscow, Gostekhizdat Publ., 1925. 306 p.
18. Mantash'yan P. N. Vikhri: ot molekul do galaktik [Vortices: from molecules to galaxies]. Stavropol, Yurkit Publ., 2007. 106 p.
19. Aliev I. N., Samedova S. A., Lyatifov R. E. [Quasi-classical quantum generalization of the London equations and the monopole hypothesis]. In: Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya “Yestestvennye nauki” [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], 2023, no. 4 (109), pp. 39–51. DOI: https://doiorg/10.18698/1812-3368-2023-4-39-51.