Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

NUMERICAL ANALYSIS OF ENERGY LEVELS OF QUANTUM PARTICLE IN FIELD OF TWO-DIMENSIONAL DIPOLE

https://doi.org/10.18384/2310-7251-2020-3-23-37

Abstract

Aim of the paper is a numerical investigation of energy levels of a quantum particle in a field of a two-dimensional dipole, based on the numerical algorithm proposed for solving the full two-dimensional Schrцdinger equation. Methodology. With the help of special expansion of a wave function the two-dimensional Schrцdinger equation was transformed to the Sturm-Liouville boundary problem for the system of differential equations. The method of inverted iterations with a shift was applied to the matrix eigenvalues search problem, that was obtained after a finite-difference approximation of the derivatives. Results. The low-lying energy levels and the corresponding wave functions of a quantum particle in a field of a two-dimensional dipole were determined. Research implications. The energy levels of bound states of a quantum particle in a field of a two-dimensional dipole were obtained using the proposed numerical algorithm. The agreement was obtained with the work of other author, where the variational approach was used, for which there is no error estimates of the calculated values relative to the exact solution. The calculations that were carried out by us with known convergence and error estimates fill this gap.

About the Authors

O. A. Koval
A. M. Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation


E. A. Koval
Joint Institute for Nuclear Research
Russian Federation


References

1. Martiyanov K., Makhalov V., Turlapov A. Observation of a two-dimensional Fermi gas of atoms // Physical Review Letters. 2010. Vol. 105. Iss. 3. P. 030404. DOI: 10.1103/PhysRevLett.105.030404.

2. Dipolar collisions of polar molecules in the quantum regime / Ni K. K., Ospelkaus S., Wang D., Quйmйner G., Neyenhuis B., de Miranda M. H. G., Bohn J. L., Ye J., Jin D. S. // Nature. 2010. Vol. 464. Iss. 7293. P. 1324-1328. DOI: 10.1038/nature08953.

3. Near-threshold bound states of the dipole-dipole interaction / Karman T., Frye M. D., Reddel J. D., Hutson J. M. // Physical Review A. 2018. Vol. 98. Iss. 6. P. 062502. DOI: 10.1103/PhysRevA.98.062502.

4. Baranov M. A. Theoretical progress in many-body physics with ultracold dipolar gases // Physical Reports. 2008. Vol. 464. Iss. 3. P. 71-111. DOI: 10.1016/j.physrep.2008.04.007.

5. The physics of dipolar bosonic quantum gases / Lahaye T., Menotti C., Santos L., Lewenstein M., Pfau T. // Reports on Progress in Physics. 2009. Vol. 72. Iss. 12. P. 126401. DOI: 10.1088/0034-4885/72/12/126401.

6. Browaeys A., Barredo D., Lahaye T. Experimental investigations of dipole-dipole interactions between a few Rydberg atoms // Journal of Physics B: Atomic, Molecular and Optical Physics. 2016. Vol. 49. Iss. 15. P. 152001. DOI: 10.1088/0953-4075/49/15/152001.

7. Observation of quantum droplets in a strongly dipolar Bose gas / Ferrier-Barbut I., Kadau H., Schmitt M., Wenzel M., Pfau T. // Physical Review Letters. 2016. Vol. 116. P. 215301. DOI: 10.1103/PhysRevLett.116.215301.

8. Parameters of LC molecules’ movement measured by dielectric spectroscopy in wide temperature range / Chausov D. N., Kurilov A. D., Belyaev V. V., Kumar S. // Opto-Electronics Review. 2018. Vol. 26. Iss. 1. P. 44-49. DOI: 10.1016/j.opelre.2017.12.001.

9. Bound states of edge dislocations: The quantum dipole problem in two dimensions / Dasbiswas K., Goswami D., Yoo C. D., Dorsey A. T. // Physical Review B. 2010. Vol. 81. Iss. 6. P. 064516. DOI: 10.1103/PhysRevB.81.064516.

10. Amore P., Fernбndez F. M. Bound states for the quantum dipole moment in two dimensions // Journal of Physics B: Atomic, Molecular and Optical Physics. 2012. Vol. 45. Iss. 23. P. 235004. DOI: 10.1088/0953-4075/45/23/235004.

11. Ciftci H., Hall R. L., Saad N. Asymptotic iteration method for eigenvalue problems // Journal of Physics A: Mathematical and Theoretical. 2003. Vol. 36. Iss. 47. P. 11807. DOI: 10.1088/0305-4470/36/47/008.

12. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивисткая теория). М.: Наука, 1974. 752 с. (Серия: Теоретическая физика. Т. 3).

13. Бабиков В. В. Метод фазовых функций в квантовой механике. М.: Наука, 1976. 287 с.

14. Landauer R. Bound States in dislocations // Physical Review. 1954. Vol. 94. Iss. 5. P. 1386. DOI: 10.1103/PhysRev.94.1386.2.

15. Emtage P. Binding of electrons, holes, and excitons to dislocations in insulators // Physical Review. 1967. Vol. 163. Iss. 3. P. 865. DOI: 10.1103/PhysRev.163.865.

16. Nabutovskii V., Shapiro B. Localized States of Order-Parameter Near a Dislocation // JETP Letters. 1977. Vol. 26. Iss. 9. P. 473-475.

17. Слюсарев В. А., Чишко К. А. Электронные локализованные состояния на краевой дислокации в металле // Физика металлов и металловедение. 1984. Т. 58. № 5. С. 877-883.

18. Dubrovskii I. A new variational method in the problem of the spectrum of elementary excitations in an edge-dislocation crystal // Low Temperature Physics. 1997. Vol. 23. Iss. 12. P. 976-979. DOI: 10.1063/1.593506.

19. Farvacque J.-L., Francois P. Numerical determination of shallow electronic states bound by dislocations in semiconductors // Physica Status Solidi (b). 2001. Vol. 223. Iss. 3. P. 635-648. DOI: 10.1002/1521-3951(200102)223:3<635::AID-PSSB635>3.0.CO;2-K.

20. Handy C., Vrinceanu D. Rapidly converging bound state eigenenergies for the two-dimensional quantum dipole // Journal of Physics B: Atomic, Molecular and Optical Physics. 2013. Vol. 46. Iss. 11. P. 115002. DOI: 10.1088/0953-4075/46/11/115002.

21. Melezhik V. S. New method for solving multidimensional scattering problem // Journal of Computational Physics. 1991. Vol. 92. Iss. 1. P. 67-81. DOI: 10.1016/0021-9991(91)90292-S.

22. Koval E. A., Koval O. A., Melezhik V. S. Anisotropic quantum scattering in two dimensions // Physical Review A. 2014. Vol. 89. Iss. 5. P. 052710. DOI: 10.1103/PhysRevA.89.052710.

23. Melezhik V. S., Hu C.-Y. Ultracold atom-atom collisions in a nonresonant laser field // Physical Review Letters. 2003. Vol. 90. Iss. 8. P. 083202. DOI: 10.1103/PhysRevLett.90.083202.

24. Давыдов А. С. Квантовая механика. Нерелятивистская теория. М.: Наука, 1973. 704 с.

25. Калиткин H. H., Альшин A. B., Альшина Е. А., Рогов Б. В. Вычисления на квазиравномерных сетках. М.: Физматлит, 2005. 224 с.

26. Handbook of Mathematical Functions / eds. Abramowitz M., Stegun A. I. Washington: U.S. National Bureau of Standards, 1965. 470 p.

27. Калиткин H. H. Численные методы; 2 изд. СПб.: БХВ-Петербург, 2011. 592 с.

28. Gelfand I. M., Fomin S. V. Calculus of variations / ed. by Silverman R. A. USA: Courier Corporation, 2000. 240 p.


Review

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)