Kinetic approach taking into account the heterogeneities of higher orders in the Navier – Stokes equation
https://doi.org/10.18384/2310-7251-2023-1-17-26
Abstract
Aim. We demonstrate a method for deriving the Navier–Stokes equation taking into account inhomogeneities of any order according to the Laplace operator using the Boltzmann kinetic equation.
Methodology. The solution method is based on the theory of nonequilibrium phenomena and on the principle of entropy growth Results. After the calculations, additional heterogeneous terms are found to the right side of the Navier–Stokes equation according to the Laplace operator.
Research implications. A new type of fundamental solutions for a stationary equation of parabolic type is predicted, which has a significant applied value in solving a number of problems of mathematical physics.
About the Authors
S. O. GladkovRussian Federation
Sergey O. Gladkov – Dr. Sci. (Phys.-Math.), Prof., Department No. 311 “Applied software and mathematical methods”
Volokolamskoe shossse 4, Moscow 125993
Zaw Aung
Russian Federation
Zaw Aung – Postgraduate Student, Department No. 311 “Applied software and mathematical methods”
Volokolamskoe shossse 4, Moscow 125993
References
1. Prandtl L., Titjens O. Fundamentals of Hydro and Aeromechanics. In 2 vols]. New York, Dover Publications, 1957.
2. Lamb H. Hydrodynamics. Cambridge, Cambridge University Press, 1932. 708 p.
3. Khristianovich S. A., Galperin V. G., Millionshchikov M. D., Simonov L. A. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow, Central Aerohydrodynamic Institute Publ., 1948. 146 p.
4. Zhukovskiy N. Ye. Sobranie sochinenii. Tom 2. Gidrodinamika [Collected works. Volume 2. Hydrodynamics]. Moscow, GITTL Publ., 1949. 765 p.
5. Lipman G. V., Paket A. E. Vvedenie v aerodinamiku szhimaemoi zhidkosti [Introduction to aerodynamics of a compressible fluid] Moscow, Izdatelstvo inostrannoy literatury Publ., 1949. 330 p.
6. Slyozkin N. A. Dinamika vyazkoi neszhimaemoi zhidkosti [Dynamics of a viscous incompressible fluid]. Moscow, GITTL Publ., 1955. 520 p.
7. Levich V. G. Fiziko-khimicheskaya gidrodinamika [Physical and Chemical Hydrodynamics]. Moscow, Fizmatgiz Publ., 1959. 700 p.
8. Birkhoff G. Hydrodynamics. A Study in Logic, Fact and Similitude. Princeton N.J., Princeton University Press, 1960. 202 p.
9. Serrin J. Mathematical Principles of Classical Fluid Mechanics. In: Truesdell, C. (eds) Fluid Dynamics I / Strömungsmechanik I. Encyclopedia of Physics / Handbuch der Physik, vol 3 / 8 / 1. Berlin, Heidelberg, Springer, 1959. pp. 125–263; https://doi.org/10.1007/978-3-642-45914-6_2.
10. Kochin N. E., Kibel I. A., Roze N. V. Teoreticheskaya gidromekhanika. V 2-kh chastyakh [Theoretical Hydromechanics. In 2 parts]. Moscow, Fizmatlit Publ., 1963. 560 p.
11. Milne-Thomson L. M. Theoretical Hydrodynamics. London, Macmillan, 1955. 632 p.
12. Monin A. S., Yaglom A. M. Statisticheskaya gidromekhanika. V 2-kh chastyakh [Statistical Hydromechanics. In 2 parts]. Moscow, Nauka Publ., 1965–1967.
13. Lifshitz E. M., Pitaevskii L. P. Fizicheskaya kinetika. T. 10 [Physical Kinetics. Vol. 10]. Moscow, Nauka Publ., 1979. 528 p.
14. Resibois P., De Leener M. Classical Kinetic Theory of Fluids. New York, Wiley, 1977. 412 p.
15. Landau L. D., Lifshitz E. M. Statistical Physics. Vol. 5. London, Butterworth-Heinemann, 1980. 564 p.
16. Gladkov S. O. [Derivation of the Magnus Formula]. In: Doklady Rossiiskoi Akademii nauk. Fizika, tekhnicheskie nauki [Reports of the Russian Academy of Sciences. Physics, technical sciences], 2022, vol. 507, no. 1, pp. 20–23. DOI: 10.31857/S2686740022060086.