Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Non-Newtonian flow of polymer composites within the framework of a structural model

https://doi.org/10.18384/2310-7251-2023-1-6-16

Abstract

Aim. We consider the rheological behavior of melts of polymer composites filled with inorganic solid particles.

Methodology. The experimental data are aproximated by the equations of the structural rheological model on separate intervals of the shear rate.

Results. The relationship between the coefficients of rheological equations and the state of the structure of the composite material is demonstrated.

Research implications. Equations are proposed that are capable of approximating experimental data at individual shear rate intervals corresponding to a certain structural state of the polymer composite melt.

About the Authors

M. P. Vekovishchev
State University of Humanities and Social Studies
Russian Federation

Mikhail P. Vekovishchev – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Physics and Chemistry

ulitsa Zelenaya30, Kolomna 140411, Moscow region



E. A. Kirsanov
State University of Humanities and Social Studies
Russian Federation

Evgeny A. Kirsanov – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Physics and Chemistry

ulitsa Zelenaya30, Kolomna 140411, Moscow region



References

1. Shenoy A. V. Rheology of filled polymer systems. Berlin, Springer Science + Business Media Dordrecht, 1999. 476 p.

2. Pamies R. Polymer rheology and processing of nano- and microcomposites, In: Materials, 2022, vol. 15 (20), pp. 7297–7300. DOI: 10.3390/ma15207297.

3. Barnes H. A. Review of the rheology of filled viscoelastic systems. In: Binding D. M., Walters K., eds. Rheology reviews 2003. London, UK, British Society of Rheology, 2003, pp. 1–36.

4. Bek M., Gonzalez-Gutierrez J., Kukla Ch., Cresnar K. P., Maroh B., Perse L. S. Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: Effect of particle material and loading. In: Applied Sciences, 2020, vol. 10, pp. 7993–8016. DOI: 10.3390/app10227993.

5. Bilalova E. A., Prut E. V., Kuznetsova O. P. Polypropylene composite material and its rheological and mechanical properties depending on the size of the filler CaCO3. In: IOP Conference Series: Materials Science and Engineering, 2019, vol. 525: Fourth interdisciplinary scientific forum with international participation “New materials and promising technologies” (27–30 November 2018, Moscow, Russian Federation), pp. 012006–012011. DOI: 10.1088/1757-899X/525/1/012006.

6. Kirsanov E. A., Matveenko V. N. Nen'yutonovskoe techenie dispersnykh, polimernykh I zhidkokristallicheskikh sistem. Strukturnyi podkhod [Non-Newtonian flow of dispersed, polymer and liquid crystal systems. Structural approach]. Moscow, Tekhnosfera Publ., 2016. 384 p.

7. Kirsanov E. A., Matveenko V. N. Vyazkost' i uprugost' strukturirovannykh zhidkostei [Viscosity and elasticity of structured liquids]. Moscow, Tekhnosfera Publ., 2022. 284 p.

8. Song M., Zhou W., Hu G., Hu L. Rheological behaviors of polymer melts and concentrated solutions. Part VI: Comparison of the material functions with yielding and thinning for polymeric suspensions with their experimental values. In: Journal of Materials Science and Technology, 1999, vol. 15, iss. 3, pp. 251–262.

9. Poslinski A. J., Ryan M. E., Gupta R. K., Seshadri S. G., Frechette F. J. Rheological behaviour of filled polymeric systems I. Yield stress and shear-thinning effects. In: Journal of Rheology, 1988, vol. 32, iss. 7, pp. 703–721. DOI: 10.1122/1.549987.

10. Fedorov Yu I., Mikhaylov A. S. [Application of the generalized flow equation for highly filled polymer systems]. In: Vestnik tekhnologicheskogo universiteta [Herald of Technological University], 2020, vol. 23, no. 8, pp. 90–93.


Review

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)