Molecular modelling of a flow interaction with a relief body
https://doi.org/10.18384/2310-7251-2023-2-51-64
Abstract
Aim. We construct algorithms that allow calculating the interaction of a heterogeneous flow with nanostructured surfaces of solids made of various materials, as well as wetting processes and movement of particles on the surface in an air flow.
Methodology. Use is made of methods of molecular modeling and known physical laws; studies performed by other authors are analyzed.
Results. A method is developed for calculating the interaction of a flow with a solid body, whose coating has a relief and a different degree of hydrophobicity. Parametric studies are performed using the molecular dynamics method.
Research implications. The results can be used to study the possibilities of controlling the state of the boundary layer and the initiation of turbulence at the molecular level.
About the Authors
N. V. ZubovaRussian Federation
Natalya V. Zubova – Cand. Sci. (Education), Assoc. Prof., Department of Physics
Zemlyanoi Val 73, Moscow 109004
I. A. Amelyushkin
Russian Federation
Ivan A. Amelyushkin – Cand. Sci. (Phys.-Math.), Programmer, Laboratory of Information Technologies and Applied Mathematics, Phystech School of Aerospace Technology
Institutskii per. 9, Dolgoprudnyi 117303, Moscow Region
References
1. Priezjev N. V. Collective nonaffine displacements in amorphous materials during largeamplitude oscillatory shear. In: Physical Review E, 2017, vol. 95, iss. 2, pp. 023002_1–023002_7. DOI: 10.1103/PhysRevE.95.023002.
2. Lashkov V. A. [Interaction of solid particles of two-phase flow with a surface of complicated profile]. In: Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya [Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy], 2008, no. 4, pp. 125–130.
3. Panfilov S. V., Tsirkunov Yu. M. Scattering of nonspherical particles rebounding from a smooth and a rough surface in a high-speed gas-particle flow. In: Journal of Applied Mechanics and Technical Physics, 2008, vol. 49, pp. 222–230. DOI: 10.1007/s10808-008-0032-4.
4. Allen M., Tildesley D. Computer Simulation of Liquids. London, Clarendon Press, 1987. 385 p.
5. Amelyushkin I. A., Stasenko A. L. [Interaction of aerosol flow nanodroplets with a solid body]. In: Nanostruktury. Matematicheskaya fizika i modelirovaniye [Nanostuctures. Mathematical physics and Modelling], 2016, vol. 14, no 2, pp. 5–23.
6. Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. In: Zeitschrift für angewandte Mathematik und Physik, 1908, vol. 56, pp. 1–37.
7. Románszki L., Mohos M., Telegdi J., Keresztes Zs., Nyiko L. A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method. In: Periodica Polytechnica. Chemical Engineering, 2014, vol. 58 (Supplement), pp. 53–59. DOI: 10.3311/PPch.7188.
8. ISO/TS 27687:2008. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticle, nanofibre and nanoplate. available at: https://www.iso.org/obp/ui/#iso:std:iso:ts:27687:ed-1:v2:en (accessed: 20.02.2020).
9. Batista C. A. S., Larson R. G., Kotov N. A. Nonadditivity of nanoparticle interactions. In: Science, 2015, vol. 350 (6257), pp. 1242477. DOI: 10.1126/science.1242477.
10. Rattunde O., Haberland H. Clusterphysik. In: Spektrum. Available at: https://www.spektrum.de/lexikon/physik/clusterphysik/2464 (accessed: 19.01.2022).
11. Asakava H., Sazaki G., Nagashima K., Nakatsubo S., Furukava Y. Two types of quasiliquid crystals are formed kinetically. In: Proceedings of the National Academy of Sciences (PNAS), 2016, vol. 113 (7), pp. 1749–1753. DOI: 10.1073/pnas.1521607113.
12. Radchenko I. V. Molekulyarnaya fizika [Molecular physics]. Moscow, Nauka Publ., 1965. 480 p.