Boltzmann and the history of the discovery of the Stefan‒Boltzmann law of thermal radiation
https://doi.org/10.18384/2310-7251-2022-4-56-67
Abstract
Aim. The purpose of this work is to consider the historical circumstances of the discovery of the Stefan‒Boltzmann law of thermal radiation.
Methodology. Use is made of a content analysis of the historical circumstances of the discovery of the Stefan‒Boltzmann law of thermal radiation.
Results. It is shown that the discovery of the Stefan‒Boltzmann law was one of the important episodes in the prehistory of the discovery of the universal Kirchhoff function. The discovery of this function by M. Planck in December 1900 led to the gradual formation of quantum theory and predetermined the development of the main direction of theoretical physics of the twentieth century, namely, quantum mechanics, and then quantum electrodynamics, quantum field theory, etc., which actually was the beginning of a new physical era, i.e. the era of quantum physics.
Research implications. Generalization and addition of information about the theory of thermal radiation study will be useful in the study of quantum theory, including the creation of a special course “History of Quantum Theory”.
About the Author
V. I. IsaevRussian Federation
Vyacheslav I. Isaev – Cand. Sci. (Phys.-Math.), Independent Researcher
Moscow
References
1. Stefan J. Über die Beziehungen zwischen der Wärmestrahlung und der Temperatur. In: Sitzungsberichte der Akademie des Wissenschaften (Wien). Ableitung 2, 1879, bd. 79, S. 391–428.
2. Boltzmann L. Über eine von Hrn Bartoli entdecte Beziehung der Wärmestrahlung zum zweiten Hauptsatze. In: Annalen der Physik, 1884, bd. 22, S. 31–39.
3. Boltzmann L. Ableitung des Stefanschen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetiscen Lichttheorie. In: Annalen der Physik, 1884, bd. 22, S. 291–294.
4. Bartoli А. Sopra i movimente prodotti dalla luce e del calore e sopra il radiometro di Crookes. Firenze, Le Monnirt, 1876. 56 p.
5. Bartoli А. Il calorico raggiante e il secondo principio di termodynamica. In: Il Nuovo Cimento, 1884, Terza serie. Tomo XV, P. 193–202.
6. Lebedev P. N. [Maxwell‒Bartoli pressure forces of radiant energy]. In: Zhurnal Russkogo fiziko-khimicheskogo obshchestva [Journal of the Russian Physical and Chemical Society], 1900, vol. XXXII, Part of the Physics, Dep. 1, no. 8, pp. 211–217.
7. Lebedew P. Les forces de Maxwell‒Bartoli dues a la Pression de la Lumière. In: Rapports Présentés au Congrès International de Physique. Paris, Gauthier-Villars, 1900. Vol. 2, pp. 133–140.
8. Lebedev P. N. [Experimental study of light pressure]. In: Zhurnal Russkogo fizikokhimicheskogo obshchestva [Journal of the Russian Physical and Chemical Society], 1901, vol. XXXIII, Part of Physics, pp. 53–76.
9. Lebedew P. Untersuchungen uber die Druckkrafte des Lichtes. In: Annalen der Physik, 1901, bd. 6, S. 433–458.
10. Timiryazev K. A. [Petr Nikolaevich Lebedev]. In: Timiryazev K. A. Sochineniya. T. 8 [Works. Vol. 8]. Moscow, Selhozgiz Publ., 1939, pp. 313–319.
11. Lazarev P. P. [P. N. Lebedev and Russian physics]. In: Vremennik Obshchestva im. Kh. S. Ledentsova [Vremennik of the H. S. Ledentsov’s Society], 1912, no. 2, pp. 65–78.
12. Lorentz Н. А. Ludwig Boltzmann. In: Verchandlungen der Deutschen Physikalischen Gesellschaft, 1907, bd. 9, S. 206–236.
13. Boltzmann L. [Molecular-kinetic theory of gases, thermodynamics, statistical mechanics]. In: Boltzmann L. Izbrannye Trudy [Selected works]. Moscow, Nauka Publ., 1984, pp. 9–330.
14. Isaev V. I. [M. Planck and history of the discovery of the quanta of the heat radiation]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika [Bulletin of the Moscow Region State University. Series: Physics-Mathematics], 2018, no. 1, pp. 91–99. DOI: 10.18384/2310-7251-2018-1-91-99.
15. Calcaneo-Roldan C., Salcidone O., Santana D. A semi-analytical approach to black body radiation. In: European Journal of Physics, 2017, vol. 38, no. 5. pp. 055807. DOI: 10.1088/1361-6404/aa7d1d.
16. Boyer T. H. Understanding the Planck black body spectrum. In: European Journal of Physics, 2016, vol. 37, no. 6, pp. 065102. DOI: 10.1088/0143-0807/37/6/065102.
17. Boyer T. H. Scaling. Scattering and black body radiation in classical physics. In: European Journal of Physics, 2017, vol. 38, no. 4, pp. 0451001. DOI: 10.1088/13616404/aa6c18.
18. Poprawski W., Gnutek Z., Radojewska E. B., Poprawski R. Investigation of black body radiation with the aid of a self-made pyroelectric infrared detector. In: European Journal of Physics, 2015, vol. 36, no. 6, pp. 065025. DOI: 10.1088/0143-0807/36/6/065025.
19. Nauenberg M. Max Planck and the birth of the quantum mechanics. In: American Journal of Physics, 2016, vol. 84, iss. 9, pp. 709–716. DOI: 10.1119/1.4955146.
20. Boyer T. H. Interference between source-free radiation and radiation from sources: Particle Boyer-like behavior for classical radiation. In: American Journal of Physics, 2017, vol. 5, iss. 9, pp. 670–675. DOI: 10.1119/1.4991396.
21. Boyer T. H. The contrasting roles of Planck’s constant in classical and quantum theories. In: American Journal of Physics, 2018, vol. 86, iss. 4, pp. 280. DOI: 10.1119/1.5021355.
22. Boyer T. H. Blackbody radiation in classical physics: historical perspective. In: American Journal of Physics, 2018, vol. 86, iss. 7, pp. 495. DOI: 10.1119/1.5034785.
23. Persson J. R Evolution of quasi-hystory of the Planck’s blackbody radiation equation in a physics. In: American Journal of Physics, 2018, vol. 86, iss. 12, pp. 887. DOI: 10.1119/1.5054005.
24. Jagannathan K. Anxiety and the equation: Understanding Boltzmann’s Entropy. In: American Journal of Physics, 2019, vol. 87, iss. 9, pp. 765. DOI: 10.1119/1.5116583.