Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ERBIUM-BASED LIQUID CRYSTAL COMPLEX FRANK CONSTANTS CALCULATION METHOD

https://doi.org/10.18384/2310-7251-2020-3-6-12

Abstract

Bstract. Aim is to determine the Frank elastic constants of an erbium-based liquid crystal complex. Methodology. The orienting effect of a magnetic field on an erbium-based liquid crystal complex was studied by a capacitive method. The dependence of the effective values of the components of the dielectric permittivity of the complex on the magnetic field is obtained. A theoretical approach and a numerical method for determining the Frank elastic constants are proposed based on the experimental dependence of the effective values of the permittivity of a cell on a magnetic field. Results. The dependences of the permittivity of the sample on the applied magnetic field explained, and Frank elastic constants for this substance are found. Research implications. Paramagnetic nematic liquid crystal complexes based on lanthanide ions (lanthanide mesogens) possess highly efficient luminescence and anisotropy of magnetic susceptibility is anomalously large for liquid crystals. The indicated properties of nematic lanthanide mesogens make it possible to create optical media with linearly polarized luminescence for use in optoelectronic devices controlled by electric and magnetic fields.

About the Authors

I. M. Tambovtcev
Ryumtsev Saint Petersburg University
Russian Federation


L. A. Dobrun
Ryumtsev Saint Petersburg University
Russian Federation


A. P. Kovshik
Ryumtsev Saint Petersburg University
Russian Federation


E. V. Aksenova
Ryumtsev Saint Petersburg University
Russian Federation


E. I. Ryumtsev
Ryumtsev Saint Petersburg University
Russian Federation


References

1. Enhanced full color tunable luminescent lyotropic liquid crystals from P123 and ionic liquid by doping lanthanide complexes and AIEgen / Lei N, Shen D., Wang X., Wang J., Li Q., Chen X. // Journal of Colloid and Interface Science. 2018. Vol. 529. P. 122-129. DOI: 10.1016/j.jcis.2018.06.012.

2. Chiriac L. F., Iliş M., Cîrcu V. Luminescent lanthanides complexes with mesogenic pyridone ligands: Emission and liquid crystals properties // Polyhedron. 2020. Vol. 190. P. 114748. DOI: 10.1016/j.poly.2020.114748.

3. Tris (β-diketonates) lanthanum nematic adducts / Dzhabarov V. I., Knyazev A. A., Strelkov M. V., Molostova E. Y., Schustov V. A., Haase W., Galyametdinovz Y. G. // Liquid Crystals. 2010. Vol. 37. Iss. 3. P. 285-291. DOI: 10.1080/02678290903506040.

4. Stewart I. W. The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. London: Taylor & Francis, 2004. 351 p. (The Liquid Crystals Book Series).

5. Val’kov A. Y., Aksenova E. V., Romanov V. P. First-order and continuous Frйedericksz transitions in cholesteric liquid crystals // Physical Review E. 2013. Vol. 87. Iss. 2. P. 022508. DOI: 10.1103/PhysRevE.87.022508.

6. Wales D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge: Cambridge University Press, 2003. 692 p.

7. Rapini A., Papoular M. Distorsion d’une lamelle nйmatique sous champ magnйtique conditions d’ancrage aux parois // Journal de Physique Colloques. 1969. Vol. 30 (C4). P. C4-54-C4-56. DOI: 10.1051/jphyscol:1969413.

8. Magnetic field-induced macroscopic alignment of liquid-crystalline lanthanide complexes / Aksenova E., Dobrun L., Kovshik A., Ryumtsev E., Tambovtcev I. // Crystals. 2019. Vol. 9. Iss. 10. P. 499. DOI: 10.3390/cryst9100499.

9. Physical Properties of Liquid Crystals: Nematics / ed. by D. A. Dunmur, A. Fukuda, G. R. Luckhurst. London: The Institution of Electrical Engineers (INSPEC), 2001. 671 p. (EMIS Datareviews Series No. 25).


Review

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)