Non-Newtonian flow of a nanofluid based on titanium oxide
https://doi.org/10.18384/2310-7251-2022-4-6-16
Abstract
Aim. We consider the rheological behavior of a nanofluid obtained on the basis of titanium oxide nanoparticles in water and ethylene glycol.
Methodology. The experimental data are approximated using equations of the structural rheological model on separate intervals of the shear rate.
Results. A relationship is obtained between the coefficients of rheological equations and the nature of changes in the structure of the nanofluid, namely, the formation and destruction of nanoparticle aggregates.
Research implications. Equations are derived that make it possible to approximate experimental data at individual shear rate intervals corresponding to a certain structural state of the nanofluid.
About the Authors
M. P. VekovishchevRussian Federation
Mikhail P. Vekovishchev – Cand. Sci. (Phys.-Math.), Assoc. Prof.
ul. Zelenaya 30, Kolomna 140411, Moscow Region
E. A. Kirsanov
Russian Federation
Evgeny A. Kirsanov – Cand. Sci. (Phys.-Math.), Assoc. Prof.
ul. Zelenaya 30, Kolomna 140411, Moscow Region
References
1. Mahbubul I. M., Saidur R., Amalina M. A. Latest developments on the viscosity of nanofluids. In: International Journal of Heat and Mass Transfer, 2012, vol. 55, iss. 4, pp. 874–885. DOI: 10.1016/J.IJHEATMASSTRANSFER.2011.10.021.
2. Rudyak V. Ya. [State-of-the-art study of nanofluid viscosity]. In: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Fizika [Vestnik NSU. Series: Physics], 2015, vol. 10, no. 1, pp. 5–22.
3. Haisheng Chen, Yulong Ding, Chunqing Tan. Rheological behaviour of nanofluids. In: New Journal of Physics, 2007, vol. 9, pp. 367–391. DOI: 10.1088/1367-2630/9/10/367.
4. Mehrali M., Sadeghinezhad E., Tahan Latibari S., Kazi S. N., Mehrali M., Zubir M. N., Metselaar H. S. C. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. In: Nanoscale Research Letters, 2014, vol. 9, pp. 15–24. DOI: 10.1186/1556-276X-9-15.
5. Hasan S. M. Non-Newtonian rheological characteristics of oil-based metal oxide nanofluids: a thesis for the degree master of science. Department of Mechanical Engineering, Northern Illinois University. De Kalb, Illinois, 2017. 55 p.
6. Saeedi A. H., Akbari M., Toghraie D. An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. In: Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 99, pp. 285–293. DOI: 10.1016/j.physe.2018.02.018.
7. Pastoriza-Gallego M. J., Lugo L., Legido J. L., Piñeiro M. M. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. In: Nanoscale Research Letters, 2011, vol. 6, pp. 560–566. DOI: 10.1186/1556-276X-6-560.
8. Tseng W. J., Lin K. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. In: Materials Science and Engineering: A, 2003, vol. 355, iss. 1–2, pp. 186–192. DOI: 10.1016/S0921-5093(03)00063-7.
9. He Y., Chen H., Ding Y., Cang D., Lu H. Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing through a vertical pipe. In: International Journal of Heat and Mass Transfer, 2007, vol. 50, iss. 11–12, pp. 2272–2281. DOI: 10.1016/j.ijheatmasstransfer.2006.10.024.
10. Cabaleiro D., Pastoriza-Gallego M. J., Gracia-Fernandez C., Pineiro M. M., Lugo L. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. In: Nanofluids. Nanoscale Research Letters, 2013, vol. 8, article number: 286. DOI: 10.1186/1556-276X-8286.
11. Kirsanov Ye. A., Matveenko V. N. Nen'yutonovskoe techenie dispersnykh, polimernykh i zhidkokristallicheskikh sistem. Strukturnyi podkhod [Non-Newtonian flow of dispersed, polymeric and liquid crystal systems]. Moscow, Tekhnosfera Publ., 2016. 384 p.
12. Kirsanov Ye. A., Matveyenko V. N. Vyazkost' i uprugost' strukturirovannykh zhidkostey [Viscosity and elasticity of structured liquids]. Moscow, Tekhnosfera Publ., 284 p.