Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

A RESONANT GRAVITY-DRIVEN FLOW OF A POWER-LAW FLUID OVER A SLIPPERY TOPOGRAPHY SUBSTRATE

https://doi.org/ 10.18384/2310-7251-2018-4-178-190

Abstract

The gravity-driven flow of a power-law fluid over a slippery topography substrate is studied. The fluid flow, due to the gravity, is assumed to be steady and confined to the limit of small amplitude of the wall corrugation. As an analytic approach, we apply the Karman-Pohlhausen integral boundary-layer method and derive an asymptotic equation valid for rather thin films. Our results support the view that the resonance is associated with an interaction of the undulated film with capillary-gravity waves travelling against the mean flow direction in the linear case. The influence of the slip condition on the linear resonance phenomena for different power-law indices n is the main factor in this work.

About the Author

Salah Saber Selim
Moscow Institute of Physics and Technology (State University)
Russian Federation


References

1. Amaouche M., Djema A., Bourdache L. A modified Shakdov’s model for thin film flow of a power-law fluid over an inclined surface // Comptes Rendus Mйcanique. 2009. Vol. 337. Iss. 1. P. 48-52.

2. Argyriadi K., Vlachogiannis M., Bontozoglou V. Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness // Physics of Fluids. 2006. Vol. 18. Iss. 1. P. 012102.

3. Beavers G.S., Joseph D.D. Boundary conditions at a naturally permeable wall // Journal of Fluid Mechanics. 1967. Vol. 30. Iss. 1. P. 197-207.

4. Berezin A.Yu., Hutter K., Spodareva L.A. Stability analysis of gravity driven shear flow with free surface for power-law fluids // Archive of Applied Mechanics. 1998. Vol. 68. Iss. 3-4. P. 169-178.

5. Dandapat B.S., Mukhopadhyay A. Waves on a film of power-law fluid flowing down an inclined plane at moderate Reynolds number // Fluid Dynamics Research. 2001. Vol. 29. Iss. 3. P. 199-220.

6. Gupta A.S. Stability of a visco-elastic liquid film flowing down an inclined plane // Journal of Fluid Mechanics. 1967. Vol. 28. Iss. 1. P. 17-28.

7. Nonlinear resonance in viscous films on inclined wavy planes / Heining C., Bontozoglou V., Aksel N., Wierschem A. // International Journal of Multiphase Flow. 2009. Vol. 35. Iss. 1. P. 78-90.

8. Heining C., Aksel N. Bottom reconstruction in thin-film flow over topography: steady solution and linear stability // Physics of Fluids. 2009. Vol. 21. Iss. 8. P. 083605.

9. Heining C., Aksel N. Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline // International Journal of Multiphase Flow. 2010. Vol. 36. Iss. 11-12. P. 847-857.

10. Manevich A.I, Manevitch L.I. The mechanics of nonlinear systems with internal resonances. London: Imperial College Press, P. 3-5.

11. Matthews M.T., James M.H. A note on the boundary layer equations with linear slip boundary condition // Applied Mathematics Letters. 2008. Vol. 21. Iss. 8. P. 810-813.

12. Ogden K.A., D’Alessio S.J.D., Pascal J.P. Gravity-driven flow over heated, porous, wavy surfaces // Physics of Fluids. 2011. Vol. 23. Iss. 12. P. 122102.

13. Oron A., Heining C. Weighted-residual integral boundary-layer model for the nonlinear dynamics of thin liquid films falling on an undulating vertical wall // Physics of Fluids. 2008. Vol. 20. Iss. 8. P. 082102.

14. Pascal J.P. Linear stability of fluid flow down a porous inclined plane // Journal of Physics D: Applied Physics. 1999. Vol. 32. No. 4. P. 417-422.

15. Pozrikidis C. Effect of surfactants on film flow down a periodic wall // Journal of Fluid Mechanics. 2003. Vol. 496. P. 105-127.

16. Ruyer-Quil C., Manneville P. Improved modeling of flow down inclined planes // The European Physical Journal B - Condensed Matter and Complex Systems. 2000. Vol. 15. Iss. 2. P. 357-369.

17. Samanta A., Ruyer-Quil C., Goyeau B. A falling film down a slippery inclined plane // Journal of Fluid Mechanics. 2011. Vol. 684. P. 353-383.

18. Saprykin S., Koopmans R.J., Kalliadasis S. Free-surface thin-film flows over topography: influence of inertia and viscoelasticity // Journal of Fluid Mechanics. 2007. Vol. 578. P. 271-293.

19. Thiele U., Goyeau B., Velarde M.G. Stability analysis of thin film flow along a heated porous wall // Physics of Fluids. 2009. Vol. 21. Iss. 1. P. 014103.

20. Trifonov Yu.Ya. Stability of a viscous liquid film flowing down a periodic surface // International Journal of Multiphase Flow. 2007. Vol. 33. P. 1186-1204.

21. Electrified viscous thin film flow over topography / Tseluiko D., Blyth M.G., Papageorgiou D.T., Vanden-Broeck J.M. // Journal of Fluid Mechanics. 2008. Vol. 597. P. 449-475.

22. Weinstein S.J., Ruschak K.J. Coating flows // Annual Review of Fluid Mechanics. 2004. Vol. 36. P. 29-53.

23. Wierschem A., Aksel N. Hydraulic jumps and standing waves in gravity-driven flows of viscous liquids in wavy open channels // Physics of Fluids. 2004. Vol. 16. Iss. 11. P. 3868-3877.

24. Wierschem A., Aksel N. Influence of inertia on eddies created in films creeping over strongly undulated substrates // Physics of Fluids. 2004. Vol. 16. Iss. 12. P. 4566-4574.

25. Linear resonance in viscous films on inclined wavy planes / Wierschem A., Bontozoglou V., Heining C., Uecker H., Aksel N. // International Journal of Multiphase Flow. 2008. Vol. 34. Iss. 6. P. 580-589.


Review

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)