Preview

Bulletin of Federal State University of Education. Series: Physics and Mathematics

Advanced search

INITIAL AND FINITE LIMIT EXPRESSION FOR THE RATE OF CHANGE IN THE RADIUS OF AN UNSTEADY EVAPORATING AEROSOL DROPLET

https://doi.org/10.18384/2310-7251-2018-4-167-177

Abstract

We have found initial and finite limit expressions for the rate of change in the radius of an unsteady evaporating aerosol droplet. The equations take into account the curvature of the droplet surface, surface tension and specific heat of the phase transition, as well as concentration and temperature jumps. Numerical calculations for all values contained in the derived expressions for water droplets of different sizes and at different ambient temperatures are carried out. The similarities and differences of these expressions are revealed, which are important to consider when choosing formulae for calculating the time of complete evaporation of droplets.

About the Authors

Elena E. Korneeva
Moscow Region State University
Russian Federation


Mikhail K. Kuzmin
Moscow Region State University
Russian Federation


References

1. Фукс Н.А. Испарение и рост капель в газообразной среде. М.: Издательство АН СССР, 1958. 91 с.

2. Щукин Е.Р., Яламов Ю.И., Шулиманова З.Л. Избранные вопросы физики аэрозолей: учебное пособие. Москва: Московский педагогический университет, 1992. 297 с.

3. Азанов Г.М., Осипцов А.Н. Влияние мелких испаряющихся капель на температуру адиабатической стенки в сжимаемом двухфазном пограничном слое // Известия Российской академии наук. Механика жидкости и газа. 2016. № 4. С. 67-76.

4. Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Прогностическое определение интегральных характеристик испарения капель воды в газовых средах с различной температурой // Инженерно-физический журнал. 2017. Т. 90. № 3. С. 648-657.

5. Захаревич А.В., Кузнецов Г.В., Стрижак П.А. Экспериментальное исследование изменения температуры в центре капли воды в процессе ее испарения в разогретом воздухе // Инженерно-физический журнал. 2016. Т. 89. № 3. С. 537-541.

6. Кузнецов Г.В., Куйбин П.А., Стрижак П.А. Оценка численных значений констант испарения капель воды, движущихся в потоке высокотемпературных газов // Теплофизика высоких температур. 2015. Т. 53. Вып. 2. С. 264-269.

7. Пискунов М.В., Стрижак П.А. Отличие условий и характеристик испарения неоднородных капель воды в высотемпературной газовой среде // Журнал технической физики. 2016. № 9. С. 24-31.

8. Хасанов А.С. Решение задачи об испарении двух капель операторными методами для любых радиусов капель и любых расстояний между ними // Вестник Московского государственного областного университета. Серия: Физика-математика. 2018. № 2. С. 51-60.

9. О диффузионном испарении (сублимации) крупной аэрозольной частицы при значительных перепадах температуры в ее окрестности / Щукин Е.Р., Малай Н.В., Шулиманова З.Л., Уварова Л.А. // Теплофизика высоких температур. 2015. Т. 53. Вып. 4. С. 561-568.

10. Giorgiutti-Dauphinй F., Pauchard L. Drying drops // The European Physical Journal E. 2018. Vol. 41. No. 3. P. 32/1-32/15.

11. On the predictions for diffusion-driven evaporation of sessile / Tran Ha V., Nguyen Tuan A.H., Biggs Simon R., Nguyen Anh V. // Chemical Engineering Science. 2018. Vol. 177. P. 417-421.

12. Кузьмин М.К. Теория нестационарного процесса испарения сферической аэрозольной капли с учетом зависимости давления насыщенного пара от кривизны ее поверхности // Вестник Московского государственного областного университета. Серия: Физика-математика. 2012. № 3. С. 39-49.

13. Галоян В.С., Яламов Ю.И. Динамика капель в неоднородных вязких средах. Ереван: Луйс, 1985. 208 с.

14. Деч Г. Руководство к практическому применению преобразования Лапласа и Z-преобразования. М.: Наука, 1971. 288 с.

15. Яламов Ю.И., Кузьмин М.К. Скорость нестационарного испарения сферической капли с учетом скачков концентрации и температуры вблизи ее поверхности // Журнал технической физики. 2005. Т. 75. Вып. 3. С. 30-35.

16. Nix N., Fukuta N. Nonsteady-state theory of droplet growth // Journal of Chemical Physics. 1973. Vol. 58. No. 4. P. 1735-1740.

17. Амелин А.Г. Теоретические основы образования тумана при конденсации пара. М.: Химия, 1972. 304 с.

18. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 720 с.


Review

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)