Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

THE MEISSNER EFFECT AND QUANTUM TRAPPING OF THE PARTICLES OF SATURN’S PROTOPLANETARY CLOUD PRODUCE A STABLE SYSTEM IN THE FORM OF SATURN RINGS

https://doi.org/ 10.18384/2310-7251-2018-4-54-65

Abstract

It is shown that Saturn’s rings originated from protoplanetary ice particles moving around the planet along chaotic orbits after the appearance of Saturn’s magnetic field due to electromagnetic phenomena. Due to diamagnetism and the superconductivity of ice particles, all their chaotic orbits gradually moved to the plane of the magnetic equator and formed a sombrero disk of rings and gaps. The particles of Saturn’s rings are separated from each other by a magnetic field driven out of them. As a result, each particle is trapped in a three-dimensional magnetic well, including due to the phenomenon of quantum Abrikosov vortices. This mechanism works even if the particles may have a small fraction of the superconductor. In addition to defragmentation due to gravity of an icy body having a size of Titan that flew up to Saturn, and collisions with fragments of the approaching Moon and meteorites, particles of frozen water generated by the geysers of Saturn’s satellites due to the magnetic coupling between the planet and its satellites can also contribute to the ring matter, which can result in the formation of a new ring. It is found that the rings are relict of the early days of the magnetic field of Saturn system.

About the Author

Vladimir V. Cherny
Modern Science Institute, Security Agency for Investment and Business in Russia
Russian Federation


References

1. Maxwell on Saturn’s rings / Brush S.G., Everitt C.W.F., Garber E. (eds.). Cambridge, MA, MIT Press Publ., 1983. 213 p.

2. Safronov V.S. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Jerusalem, Israel Program for Scientific Translations Publ., 1972. 212 p.

3. Alfven H. Solar system history as recorded in the Saturnian ring structure // Astrophysics and Space Science. 1983. Vol. 97. Iss. 1. P. 79-94.

4. Fridman A.M., Gorkavyi N.N. Physics of Planetary Rings. Berlin, Springer-Verlag, 1999. 437 p.

5. Cassini arrives at Saturn // Science. 2005. Vol. 307. Iss. 571. P. 1222-1276.

6. An Evolving View of Saturn’s Dynamic Rings / Cuzzi J.N., Burns J.A., Charnoz S., et al. // Science. 2010. Vol. 327. Iss. 5972. P. 1470-1475.

7. Estrada P.R., Durisen R.H., Cuzzi J.N. Ballistic transport: After the Cassini grand finale, is there a final consensus on ring origin and age? // American Geophysical Union Meeting. New Orleans, 12.12.2017. P. 298112.

8. Canup R.M. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite // Nature. 2010. Vol. 468. P. 943-946.

9. Tiscareno M.S. et al. Observations of Ejecta Clouds Produced by Impacts onto Saturn’s Rings // Science. 2013. Vol. 340. Iss. 6131. P. 460-464.

10. Enceladus’ Water Vapor Plume / Hansen C.J., Esposito L., Stewart A.I.F., et al. // Science. 2006. Vol. 311. Iss. 5766. P. 1422-1425.

11. Tchernyi V.V., Pospelov A.Yu. About hypothesis of the superconducting origin of the Saturn’s rings // Astrophysics and Space Science. 2007. Vol. 307. Iss. 4. P. 347-356.

12. Tchernyi (Cherny) V.V. About role of electromagnetism to the Saturn rings origin - To the unified theory of the planetary rings origin // International Journal of Astronomy and Astrophysics. 2013. Vol. 3. No. 4. P. 412-420.

13. Tchernyi V.V., Pospelov A.Yu. Superconductivity of Saturn Rings: Quantum Locking, Rings Disc Thickness and Its Time Creation // Journal of Modern Physics (special issue on Advance in Superconducting Physics). 2018. Vol. 9. No. 3. P. 419-432.

14. Girich S.V., Pospelov A.Yu., Tchernyi V.V. Radar Data Explanation via Superdiamagnetic Model of Saturn’s Rings // Bulletin of the American Astronomical Society. 1998. Vol. 30. P. 1043.

15. Tchernyi V.V. et al. Are Saturn rings superconducting? (Super diamagnetism and possible superconductivity of planetary rings) // Huntsville Space Physics Colloquium. University of Alabama, Huntsville. NASA Marshall Space Flight Center, 20.08.1999 [Электронный ресурс]. URL: http://solar-b.msfc.nasa.gov/ssl/colloquia/99aug20_spcoll.htm (дата обращения: 20.08.2017).

16. Tchernyi V.V. Possible superconductivity of Saturn’s rings // Colloquia: Spring/Summer. Institute for Astronomy, University of Hawaii, 7.08.2002: [Электронный ресурс]. URL: http://www.ifa.hawaii.edu/colloquia/schedule_021.html (дата обращения: 7.08.2018).

17. Tchernyi V.V., Pospelov A.Yu. Quantum Locking and the Meissner Effect Lead to the Origin and Stability of the Saturn Rings System // International Journal of Astronomy and Astrophysics. 2018. Vol. 8. No. 1. P. 104-120.

18. Сверхпроводимость льда при высоких давлениях / Бабушкина Г.В., Кобелев Л.Я., Яковлев Е.Н., Бабушкин А.Н. // Физика твёрдого тела. 1986. Т. 28. № 12. С. 3732-3734.

19. Yen F., Gao T. Dielectric anomaly in ice near 20 K: evidence of macroscopic quantum phenomena // The Journal of Physical Chemistry Letters. 2015. Vol. 6. Iss. 14. P. 2822-2825.

20. Electron-Phonon Interactions in Solid C36 / Côté M., Grossman J.C., Cohen M.L., Louie S.G. // Physical Review Letters. 1998. Vol. 81. Iss. 3. P. 697-700.

21. Deutscher G., Azoulay M., Almog B. Quantum levitation, quantum locking, quantum trapping // ASTC Annual Conference. Maryland [Электронный ресурс]. URL: https://www.ted.com/talks/boaz_almog_levitates_a_superconductor#t-7666 (дата обращения: 15.10.2018).

22. Abrikosov A.A. On the magnetic properties of superconductors of the second group // Journal of Experimental and Theoretical Physics. 1957. Vol. 5. No. 6. P. 1174-1182.


Review

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)