Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

EFFECT OF GRANULAR SILVER FILMS MORPHOLOGY ON THE MOLECULES ORIENTATION AND ION CONTAMINATION OF NEMATIC LIQUID CRYSTAL

https://doi.org/ 10.18384/2310-7251-2017-4-103-113

Abstract

The structure of granular silver films at the interface of liquid crystal (LC) cells and their influence on LC molecule orientation and ionic contamination are examined. Granular silver films were deposited on a glass substrate covered with an ITO electrode and a-C:H thin films. The morphology structure of the silver films was changed after their annealing at 200 °C. The silver granules became spheroidal with an average diameter of -30 nm and the channel area between them increased. The change in the structure of the Ag films led to an increase in the phase retardation and a decrease in the pretilt angle of the LC director from 51° to 7°. The density of ionic impurities in the LC cell with the annealed silver film was three times more than in the LC cell with the unannealed film. The impact of the alignment of the LC molecules at the surface of the granular silver films on the intensity of the plasmonic peak and its red shift in the absorption spectra is shown.

About the Authors

Elena A. Konshina
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation


Dmitrii P. Shcherbinin
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation


References

1. Franklin D., Chen Y., Vazquez-Guardado A., Modak S., Boroumand J., Xu D., Wu S.-T., Chand D. [Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces]. In: Nature Communication, 2015, vol. 6, P. 7337 (1-8).

2. Si G., Zhao Y., Leong E.S.P, Liu Y.J. [Liquid-Crystal-Enabled Active Plasmonics: A Review]. In: Materials, 2014, vol. 7, pp. 1296-1317.

3. Zhang Y., Liu Q., Mundoor H., Yuan Y., Smalyukh I.I. [Metal Nanoparticle Dispersion, Alignment, and Assembly in Nematic Liquid Crystals for Applications in Switchable Plasmonic Color Filters and E-Polarizers]. In: ACS Nano, 2015, vol. 9, pp. 3097-3108.

4. Kamei T., Moritake H., Utsumi Y. [Microwave and Light-Wave Measurements for Nematic-Liquid-Crystal-Loaded Phase Shifter Using Coplanar Waveguide with Floating Electrode]. In: Japanese Journal of Applied Physics, 2010, vol. 49, P. 01AF03 (1-6).

5. Goelden F., Gaebler A., Goebel M., Manabe A., Mueller S., Jakoby R. [Tunable liquid crystal phase shifter for microwave frequencies]. In: Electronic Letters, 2009, vol. 45, pp. 686-687.

6. Weil C., Muller St., Scheele P., Best P., Lussem G., Jakoby R. [Highly-anisotropic liquid-crystal mixtures for tunable microwave devices]. In: Electronic. Letters, 2003, vol. 39, pp. 1732-1734.

7. Blinov L.M. Structure and properties of liquid crystals. New York, Springer Science & Business Media, 2011. 439 p.

8. Willman E., Seddon L., Osman M., Bulak A., James R., Day S.E., Fernandez F.A. [Liquid crystal alignment induced by micron-scale patterned surfaces]. In: Physical Review E, 2014, vol. 89, P. 052501 (1-7).

9. Yi Y., Nakata M., Martin A.R., Clark N.A. [Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography]. In: Applied Physics Letters, 2007, vol. 90, P. 163510 (1-3).

10. Silvestre N.M., Romero-Enrique J.M., Telo da Gama M.M. [Nematic liquid crystals on sinusoidal channels: the zigzag instability]. In: Journal of Physics-Condensed Matter, 2017, vol. 29, P. 014004 (1-6).

11. Rojas-Gуmez У.A., Romero-Enrique J.M., Silvestre N.M., Telo da Gama M.M. [Pattern-induced anchoring transitions in nematic liquid crystals]. In: Journal of Physics-Condensed Matter, 2017, vol. 29, P. 064002 (1-14).

12. Amosova L.P. [How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals]. In: Journal of Optical Technology, 2013, vol. 80, pp. 179-186.

13. Konshina E.A. [Production methods and properties of liquid-crystal-orienting layers based on amorphous carbon]. In: Journal of Optical Technology, 2011, vol. 78, pp. 210-217.

14. Garbovskiy Y., Reisman L., Celinski Z, Camley R.E., Glushchenko A. [Metallic surfaces as alignment layers for nondisplay applications of liquid crystals]. In: Applied Physics Letters, 2011, vol. 98, P. 073301 (1-3).

15. Sanda P.N, Dove D.B., Ong H.L. [Role of surface bonding on liquid-crystal alignment at metal-surfaces]. In: Physics Review A, 1989, vol. 39, pp. 2653-2658.

16. Lo K.Y., Huang C.Y., Chu T.H., Hsu C.J., Lin C.H., Fuh A.Y.G. [Variation of nematic liquid crystal on a silver surface]. In: Journal of Optics A: Pure and Applied Optics, 2006, vol. 8, pp. 501-506.

17. Armitage D. [Alignment of liquid-crystal on a polarizing metal-film]. In: Applied Physics Letters, 1990, vol. 56, P. 1723 (1-2).

18. Ong H.L., Hurd A.J., Meyer R.B. [Alignment of nematic liquid-crystals by inhomogeneous surfaces]. In: Journal of Applied Physics, 1985, vol. 57, pp. 186-192.

19. Garbovskiy Y. [Ion capturing/ion releasing films and nanoparticles in liquid crystal devices]. In: Applied Physics Letters, 2017, vol. 110, P. 041103 (1-5).

20. Garbovskiy Y. [Electrical properties of liquid crystal nano-colloids analysed from perspectives of the ionic purity of nano-dopants]. In: Liquid Crystals, 2016, vol. 43, pp. 648-653.

21. Garbovskiy Y., Glushchenko I. [Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena]. In: Crystals, 2015, vol. 5, pp. 501-533.

22. Prasad S.K., Kumar M.V., Shilpa T., Yelamaggad C.V. [Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal]. In: RSC Advances, 2014, vol. 4, pp. 4453-4462.

23. Prasad S.K., Sandhya K.L., Nair G.G., Hiremath U.S., Yelamaggad C.V., Sampath S. [Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites]. In: Liquid Crystals, 2006, vol. 33, pp. 1121-1125.

24. Dhar R., Mishra M., Kumar S. [Effect of dispersed colloidal gold nanoparticles on the electrical properties of a columnar discotic liquid crystal]. In: RSC Advances, 2014, vol. 4, pp. 62404-62412.

25. Kamaliya B., Kumar M.V., Yelamaggad C.V., Prasad S.K. [Enhancement of electrical conductivity of a liquid crystal-gold nanoparticle composite by a gel network of aerosil particles]. In: Applied Physics Letters, 2015, vol. 106, P. 083110 (1-5).

26. Singh U.B., Dhar R., Dabrowski R., Pandey M.B. [Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals]. In: Liquid Crystals, 2013, vol. 40, pp. 774-782.

27. Neeraj, Raina K.K. [Nickel nanoparticles doped ferroelectric liquid crystal composites]. In: Optical Materials, 2013, vol. 35, pp. 531-535.

28. Geis M.W., Bos P.J., Liberman V., Rothschild M. [Broadband optical switch based on liquid crystal dynamic scattering]. In: Optics Express, 2016, vol. 24, pp. 13812-13823.

29. Guralnik I.R., Samagin S.A. [Electrophysics of a modal multichannel liquid-crystal wavefront corrector]. In: Quantum Electronics, 2002, vol. 32, pp. 362-366.

30. Barton Y., Kal’nin A.A. [Liquid-crystal diode generator of low-frequency oscillations]. In: Technical Physics, 1998, vol. 43, pp. 112-113.

31. Leonov N.B., Gladskikh I.A., Polishchuk V.A., Vartanyan T.A. [Evolution of the optical properties and morphology of thin metal films during growth and annealing]. In: Optics and Spectroscopy, 2015, vol. 119, pp. 450-455.

32. Konshina E.A., Fedorov M.A., Amosova L.P. [Determining the director tilt and phase lag of liquid-crystal cells by optical methods]. In: Journal of Optical Technology, 2006, vol. 73, pp. 830-833.

33. Shcherbinin D.P., Konshina E.A, Solodkov D.E. [The effect of CdSe/ZnS quantum dots on the rotational viscosity and charge carrier concentration of a nematic liquid crystal]. In: Technical Physical Letters, 2015, vol. 41, pp. 781-783.

34. Shcherbinin D.P., Konshina E.A., Polischuk V.A. [Influence of surface properties on the structure of granular silver films and excitation of localized plasmons]. In: Optics and Spectroscopy, 2016, vol. 120, pp. 622-627.

35. Noguez C. [Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment]. In: The Journal of Physical Chemistry C, 2017, vol. 10, pp. 3806-3819.

36. Muskens O.L., Billaud P., Broyer M., Del Fatti N., Vallйe F. [Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment]. In: Physical Review B, 2008, vol. 78, P. 205410 (1-9).

37. Su K.H., Wei Q.H., Zhang X., Mock J.J., Smith D.R., Schultz S. [Interparticle coupling effects on plasmon resonances of nanogold particles]. In: Nano Letters, 2003, vol. 3, pp. 1087-1090.

38. Kurochkina M.A., Shcherbinin D.P., Konshina E.A. [Spectral and dielectric properties of a nematic liquid crystal doped semiconductor quantum dots CdSe/ZnS]. In: Proceedings of SPIE, 2015, vol. 9519, P. 95190Z (1-5).


Review

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)