Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

MODERN TRENDS IN THE DEVELOPMENT OF UV-SOURCES OF GERMICIDAL RANGE

https://doi.org/ 10.18384/2310-7251-2017-4-24-38

Abstract

In recent decades the field of application of UV light sources has been rapidly increasing. They can be used for many purposes in everyday life, medicine, industry, especially for disinfection of air, water, and surfaces. The most efficient for this purpose is the UV radiation within the so-called germicidal range. The mercury-vapor low and medium pressure lamps are most widely used. However, nowadays a tendency has been promoted to withdraw mercury appliances not only from household usage, but from industry. This leads to a necessity of the development of mercury-free UV light sources such as excimer lamps and UV light-emitting diodes (UV-LEDs). Recently a new kind of lamps, so called cathodoluminescent UV light sources (especially with field emission cathodes), has been developed.

About the Authors

Alexandr S. Bugaev
Moscow Institute of Physics and Technology (State University); Moscow Region State University
Russian Federation


Evgenii P. Sheshin
Moscow Institute of Physics and Technology (State University)
Russian Federation


Dmitry I. Ozol
Moscow Institute of Physics and Technology (State University)
Russian Federation


Maung Maung Myo
Moscow Institute of Physics and Technology (State University)
Russian Federation


Mikhail I. Danilkin
P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation


Natalia Yu. Vereschagina
P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation


References

1. Ametepe J., Peng S., Manos D. Ultraviolet discharges from a radio-frequency system for potential biological/chemical applications // Chinese Physics B. 2017. Vol. 26. № 8. P. 083302.

2. Avdeev S.M. et al. XeI barrier discharge excilamp // Optics and Spectroscopy. 2013. Vol. 115. № 1. pp. 28-36.

3. Beck S.E. et al. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy // Water research. 2017. Vol. 109. pp. 207-216.

4. Bolton J.R., Cotton C.A. The ultraviolet disinfection handbook. American Water Works Association, 2011.

5. Egorov N., Sheshin E. Field Emission Electronics. Springer, 2017.

6. Hamamatsu Photonics. UVCL (Ultra Violet Cathode emitting Light source). [Электронный ресурс]. URL: http://www.hamamatsu.com/us/en/product/category/1001/3068/index.html (дата обращения: 24.09.2017).

7. Klimov V.I., ed. Nanocrystal Quantum Dots (2nd Ed.). CRC Press, 2010.

8. Kominami H. et al. Cathodoluminescence of ZnAl2O4 Phosphor for the Application of UV Emission Devices // Vacuum Nanoelectronics Conference (IVNC), 2010, 23rd International. pp. 30-31.

9. Kominami H., Nakanishi Y., Hara K. Cathodoluminescent properties of ZnO-based phosphors for UV emission // Vacuum Nanoelectronics Conference, 2009. IVNC 2009. 22nd International, pp. 67-68.

10. Kowalski W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer Berlin Heidelberg, 2010. 501 p.

11. Kwak J. et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots // Nano letters. 2015. Vol. 15. № 6. P. 3793-3799.

12. Minamata Convention on Mercury. [Электронный ресурс]. URL:http://www.mercuryconvention.org/ (дата обращения: 24.09.2017)

13. Muramoto Y., Kimura M., Nouda S. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp // Semiconductor Science and Technology, 2014. Vol. 29. № 8. P. 084004.

14. Ozol D.I. Preliminary study of cathode ray tube phosphors on the basis of nanocrystal quantum dots // 29th International Vacuum Nanoelectronics Conference (IVNC), 2016, Vancouver, BC, 2016, pp. 1-2.

15. Schalk S. et al. UV-Lamps for disinfection and advanced oxidation-lamp types, technologies and application // IUVA news, 2005. Vol. 8. № 1. pp. 32-37.

16. Seong T.Y. et al. III-Nitride based light emitting diodes and applications. Dordrecht: Springer Netherlands, 2013.

17. Shin J.Y. et al. Fundamental characteristics of deep-UV light-emitting diodes and their application to control foodborne pathogens // Applied and environmental microbiology, 2016. Vol. 82. № 1. pp. 2-10.

18. Shur M.S., Gaska R. Deep-ultraviolet light-emitting diodes // IEEE Transactions on electron devices. 2010. Vol. 57. № 1. pp. 12-25.

19. Song K., Mohseni M., Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review // Water research, 2016. Vol. 94. pp. 341-349.

20. Yanagihara M. et al. Vacuum ultraviolet field emission lamp consisting of neodymium ion doped lutetium fluoride thin film as phosphor // The Scientific World Journal. 2014.

21. Yanagihara M. et al. Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor // APL Materials. Vol. 2. 2014. № 4. P. 046110.

22. Zoschke K. et al. Vacuum-UV radiation at 185 nm in water treatment-a review // Water research. 2014. Vol. 52. P. 131-145.

23. Бугаев А.С. и др. Катодолюминесцентные источники света (современное состояние и перспективы) // Успехи физических наук. 2015. Т. 185. № 8. С. 853-883.

24. Верещагина Н.Ю. и др. Катодолюминесцентные источники УФ-излучения // XIII Международная конференция по импульсным лазерам и применениям лазеров AMPL-2017, Томск.

25. Левшин В.Л. и др. Исследование катодолюминесценции цинксульфидных и некоторых других люминофоров // Труды Физического института им. П.Н. Лебедева. 1963. Вып. 23. С. 64-135.

26. Тарасенко В.Ф., Соснин Э.А. Эксилампы барьерного разряда: история, принцип действия, перспективы // Оптический журнал. 2012. Т. 79. № 10. С. 58-65.


Review

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)