Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

TEMPERATURE EFFECTS IN STOKES’ SECOND PROBLEM

https://doi.org/ 10.18384/2310-7251-2017-2-46-52

Abstract

We consider Stokes’s second problem in relation to the behavior of a rarefied gas filling a half-space, when the plane limiting the half-space performs harmonic oscillations in its own plane. Equations of continuum mechanics in the slip regime are used. It is shown that the approximation that is quadratic in the wall velocity is characterized by temperature effects in a gas due to the influence of viscous dissipation. In this case, there is a temperature drop between the body surface and the gas away from the surface.

About the Authors

Vladimir V. Dudko
Bauman Moscow State Technical University
Russian Federation


Aleksandr A. Yushkanov
Moscow Region State University
Russian Federation


References

1. Stokes G.G. On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambr. Phil. IX. 1851. P. 8-106.

2. Khan M., Asia A., Fetecau C. On exact solutions of Stokes second problem for a Burgers’ fluid, I. The case γ < λ2/4. // J. Appl. Math. and Phys. (ZAMP). 2009. V. 61. № 4. P. 697-720.

3. Steinhell E., Scherber W., Seide M., Rieger H. Investigation on the interaction of gases and well defined solid surfaces with respect to possibilities for reduction of aerodynamic friction and aerothermal heating // Rarefied gas dynamics. Ed. J.L. Potter. N.Y.: Acad. press. 1977. P. 589-602.

4. Graebel W.P. Engineering Fluid Mechanics. New York. Taylor & Francis. 2001. 752 p.

5. Cleland A.N., Roukes M.L. A nanometer-scale mechanical electrometer // Nature. Vol. 392. 1998. P. 160-162.

6. Дудко В.В., Юшканов А.А., Яламов Ю.И. Влияние свойств поверхности на характеристики сдвиговых волн // Журнал технической физики. 2005. Т. 75. Вып. 4. С. 134-135.

7. Karabacak D.M., Yakhot V., Ekinci K.L. High-frequency nanofluidics: an experimental study using nanomechanical resonators, Phys. Rev. Lett. 98. 2007, pp. 254-505.

8. Sharipov F., Kalempa D. Gas flow around a longitudinally oscillating plate at arbitrary ratio of collision frequency to oscillation frequency // Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S. Ivanov and A.K. Rebrov. Novosibirsk, 2007. P. 1140-1145.

9. Дудко В.В., Юшканов А.А., Яламов Ю.И. Генерация колеблющейся поверхностью сдвиговых волн в газе // Теплофизика высоких температур. 2009. Т. 47. № 2. С. 262-268.

10. Акимова В.А., Латышев А.В., Юшканов А.А. Аналитическое решение второй задачи Стокса о поведении газа над колеблющейся поверхностью // Известия РАН. Серия: Механика жидкости и газа. 2013. №1. С. 125-140.

11. Латышев А.В., Юшканов А.А. Аналитическое решение второй задачи Стокса для разреженного газа с граничными условиями Черчиньяни // Журнал вычислительной математики и математической физики, 2013. Т. 53. № 3. С. 128-147.

12. Latyshev A. V., Yushkanov A. A. Temperature jump in second Stokes’ problem by nonlinear analysis// arXiv:1602.08689 [physics.flu-dyn].

13. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. Т. 6. М.: Наука (1986). 620 с.

14. Черчиньяни К. Теория и приложения уравнения Больцмана. М.: Мир. 1978. 495 c.


Review

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)