Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

CALCULATION OF MATRIX ELEMENTS OF THE BOLTZMANN COLLISION OPERATOR FOR GAS MIXTURES

https://doi.org/10.18384/2310-7251-2016-4-68-76

Abstract

We have calculated matrix elements of the Boltzmann collision operator for nonequilibrium gas mixtures in the framework of the generalized torque method. The value of the partial change in the momentum due to collisions is obtained, which is expressed through the matrix elements for an arbitrary law of interaction between particles of a nonequilibrium mixture with a large temperature difference between the component and the relative velocity comparable to the thermal speed, when the function of the zero approximation is the Maxwell function. Decomposition for a partial change in the momentum due to collisions includes terms regarding hydrodynamic variables up to third degree and, therefore, the scope of its applicability applies to small, but finite values. Moreover, the contribution of higher moments strongly depends on the law of interaction between colliding particles and is evaluated for the power-law interaction. We have derived an equation for the evolution of the partial chaotic energy. We have estimated the contribution of nonlinear terms of the hydrodynamic variables to the desired expression.

About the Author

Boris Markeev
Московский государственный областной университет
Russian Federation


References

1. Маркеев Б.М. Кинетическая теория неоднородных и неравновесных газовых смесей // Вестник Московского государственного областного университета. Серия: Физика-Математика, 2016. № 3. С. 30-36.

2. Ender A.Ya., Ender I.A., Bakaleinikov L.A., Flegontova E.Yu. Recurrence relations between kernels of the nonlinear Boltzmann collision integral // Europ. J. Mech B/Fluids 36, 17-24 (2012).

3. Чепмен С., Каулинг Т. Математическая теория неоднородных газов. М. Иностранная литература, 1960. 510 с.

4. Бакалейников Л.А., Флегонтова Е.Ю., Эндер А.Я., Эндер И.А. Рекуррентная процедура расчёта ядер нелинейного интеграла столкновений уравнения Больцмана // Журнал технической физики. 2016. Том 86. Вып. 4. С. 10-20.

5. Shunk R.W. Mathematically Structure of Transport Equations for Multispecies Flows. Reviews of Geophys. And Space Physics, 1977. Vol. 15. no. 4. pp. 429-445.

6. Иванов М.С., Коротченко М.А., Михайлов Г.А., Рогазинский С.В. Глобально-весовой метод Монте-Карло для нелинейного уравнения Больцмана // Журнал вычислительной математики и математической физики. 2005. Т. 45. Вып. 10. С. 1860-1870.

7. Черемисин Ф.Г. Метод прямого численного интегрирования уравнения Больцмана // Доклады Академии наук. 1997. Вып. 10. С. 53-57.

8. Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах. М.: Мир, 1976. 554 с., ил.


Review

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)