Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

STUDY OF THE EFFECT OF THE MAGNETIC FIELD ON A JET OF A STATIONARY PLASMA THRUSTER

https://doi.org/10.18384/2310-7251-2020-1-77-89

Abstract

Purpose. The aim of the paper is to study the effect of the magnetic field on a jet of a stationary plasma thruster. Methodology and Approach. Considering the collisionless movement of ions, it is possible to derive an expression for the distribution function of ions coming out of a ring hole. Then, a scheme is constructed to calculate the density of ions as a corresponding integral of the distribution function. Results. We have obtained the patterns of the ion density distribution in a three-dimensional space, which show the possibility of controlling the thrust vector by the magnetic field. Theoretical and Practical Implications. The obtained results indicate a further development of the direction in which the methods of kinetic theory in plasma are used. The results of this work are of practical importance for specialists involved in the design and development of new types of electric propulsion engines.

About the Authors

A. M. Bishaev
Moscow Institute of Physics and Technology (National Research University)
Russian Federation


M. V. Abgaryan
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Three-dimensional simulation of atom and ion dynamics in a stationary plasma thruster / Lazourenko A., Kim V., Bishaev A., Auweter-Kurtz M. // Journal of Applied Physics. 2005. Vol. 98. Iss. 4. 043303. P. 521-532.

2. Экспериментальное исследование отклонения вектора тяги плазменного ускорителя / Бугрова А. И., Бугров Г. Э., Бишаев А. М., Десятсков А. В., Козинцева М. В., Липатов А. С., Харчевников В. К., Смирнов П. Г. // Письма в Журнал технической физики. 2014. Т. 40. Вып. 4. С. 42-48.

3. Абгарян M. В., Бишаев A. M. Модернизация метода расщепления для решения системы кинетических уравнений, описывающих поведение струи разреженной плазмы // Журнал вычислительной математики и математической физики. 2018. Т. 58. № 7. С. 1132-1146.

4. Бондарь Е. А., Швейгерт В. А., Иванов М. С. Численное моделирование струи стационарного плазменного двигателя // Кинетическая теория и динамика разреженных газов: Материалы Всероссийского семинара (Новосибирск, 2-7 декабря 2002 г.). Новосибирск: НГАСУ, 2002. С. 123-126.

5. Cheremisin F. G., Solving the Boltzmann equation in the case of passing to the hydrodynamic flow regime // Doklady Physics. 2000. Vol. 45. Iss. 8. P. 401-404.

6. Larina I. N., Rykov V.A. Numerical solution of the Boltzmann equation by a symmetric splitting method // Computational Mathematics and Mathematical Physics. 2003. Vol. 43. Iss. 4. P. 575-586.

7. Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics / Titarev V. A., Frolova A. A., Rykov V. A., Vashchenkov P. V., Bondar Ye. A. // Journal of Computational and Applied Mathematics. 2020. Vol. 364. P. 112354.

8. Jambunathan R., Levin D. A. Kinetic Modeling of Plasma Plume using Multi-GPU Forest of Octree Approach // Proceedings of 35th International Electric Propulsion Conference. 2017. P. 1-17.

9. One-dimensional Direct Vlasov Simulations of Non-stationary Plasma Expansion in Magnetic Nozzle / Sanchez-Arriaga G., Zhouy J., Ahedoz-Sanchezx E., Ramos J. J. // 35th International Electric Propulsion Conference. 2017. P. 106.


Review

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)