Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

MODELING THE INFLUENCE OF VIRTUAL REALITY ON THE ADEQUACY OF PERCEPTION OF REALITY BY THE HUMAN NERVOUS SYSTEM

https://doi.org/10.18384/2310-7251-2020-1-37-49

Abstract

Purpose. We have identified the impact of virtual reality (distorted or false information) on the human nervous system. Methodology and Approach. We use a mathematical model of an artificial neural network (ANN), built in the image and likeness of the human nervous system. To conduct a correct computer experiment, we selected: (1) the impact of the game system on the ANN, which provides a large amount of virtual information, and (2) the ANN was configured only for visual perception. Distorted (virtual) information is sent to the input of the pre-trained ANN, and the ANS is retrained taking into account the distorted information. After several sessions in the virtual reality environment of the ANN, the response of the ANN to the original actual reality is studied. A Python program has been developed to manage the ANS. Results. It is shown that the conducted model experiment on the effect of virtual reality on the ANN, previously trained on traditional objects of the surrounding reality, makes these objects either difficult to recognize or, in general, unrecognizable. Theoretical and Practical implications. A suitable computer model was built for the first time that allows one to study the effect of virtual reality on the human nervous system; it is shown for the first time quantitatively and qualitatively how virtual reality affects the ANN and, consequently, the human nervous system.

About the Authors

A. K. Kirichenko
Moscow Region State University
Russian Federation


E. V. Kalashnikov
Moscow Region State University
Russian Federation


References

1. Искусственный интеллект в решении актуальных социальных и экономических проблем ХХI века: сборник статей по материалам Третьей всероссийской научно-практической конференции (г. Пермь, 14-18 мая 2018 г.). Пермь: ПГНИУ, 2018. 294 с.

2. Artificial Intelligence in Society. OECD (2019). Paris: OECD Publishing, 2019. 148 p.

3. Hussein B. R. Social, Economic and Ethical Consequences of AI(Preprint). Brunei: University Brunei Darussalam, 2018. 10 p.

4. Хайкин С. Нейронные сети. М.: Вильямс, 2006. 1104 с.

5. Круг П. Г. Нейронные сети и нейрокомпьютеры. М.: Изд-во МЭИ, 2002.177 с.

6. Information Technology Essentials for Behavioral Health Clinicians / edited by N. A. Dewan, J. S. Luo, N. M. Lorenzi. London: Springer-Verlag, 2011. 213 p.

7. Дружилов С. А. Негативные воздействия современной информационной среды на человека: психологические аспекты// Психологические исследования: электронный научный журнал. 2018. T. 11. № 59. URL: http://psystudy.ru/index.php/num/2018v11n59/1572-druzhilov59.html (дата обращения: 14.12.2019)

8. Diehl P. U., Cook M. Unsupervised learning of digit recognition spike-timing-dependent plasticity// Frontiers in Computational Neuroscience. 2015. Vol. 9. Article 99 [Электронный ресурс]. URL: https://www.frontiersin.org/articles/10.3389/fncom.2015.00099/full (дата обращения: 14.12.2019).

9. Sharma D., Kumar N. A Review on Machine Learning Algorithms, Tasks and Applications // International Journal of Advanced Research in Computer Engineering & Technology (IJARCET). 2017. Vol. 6. Iss. 10. P. 2278-1323 [Электронный ресурс]. URL: http://ijarcet.org/wp-content/uploads/IJARCET-VOL-6-ISSUE-10-1548-1552.pdf (дата обращения: 14.12.2019).


Review

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)