Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

VISCOUS MECHANISM IN THE THEORY OF ULTRASOUND ATTENUATION ANISOTROPY BY MAGNETIC FLUIDS

https://doi.org/10.18384/2310-7251-2019-4-60-69

Abstract

We report a comparative analysis of the classical theory of the viscous mechanism of sound attenuation by ultrafine media and one of the dominant theories of sound attenuation anisotropy by magnetic fluids on the basis of the viscous mechanism. The Taketomi theory used by many authors gives overestimated values for the size of aggregates in magnetic fluids and is not able to quantify experimental data. In addition, the formula obtained by Taketomi does not reduce to the classical expression for viscous absorption in the limiting case and, therefore, should be considered erroneous.

About the Authors

A. D. Kurilov
MIREA - Russian Technological University, Moscow Region State University
Russian Federation


V. V. Sokolov
MIREA - Russian Technological University
Russian Federation


P. A. Eminov
National Research University “Higher School of Economics”
Russian Federation


References

1. Рытов С. М., Владимирский В. В., Галанин М. Д. Распространение звука в дисперсных системах // Журнал экспериментальной и теоретической физики. 1938. Т. 8. № 5. С. 614-626.

2. Соколов В. В., Надворецкий В. В. Вязкостный механизм поглощения ультразвука в магнитных жидкостях // Магнитная гидродинамика. 1994. Т. 30. № 5. С. 15-22.

3. Распространение ультразвука в магнитной жидкости. I. Учет агрегирования частиц / Гогосов В. В., Мартынов С. И., Цуриков С. Н., Шапошникова Г. А. // Магнитная гидродинамика. 1987. Т. 23. № 2. С. 19-27.

4. Распространение ультразвука в магнитной жидкости. II. Анализ экспериментов: определение размеров агрегатов / Гогосов В. В., Мартынов С. И., Цуриков С. Н., Шапошникова Г. А. // Магнитная гидродинамика. 1987. Т. 23. № 3. С. 15-21.

5. Надворецкий В. В. Поглощение ультразвука в магнитных жидкостях: дис. … канд. физ.-мат. наук. М., 1999. 118 с.

6. The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids / Brojabasi S., Muthukurman T., Laskar J. M., Philip J. // Optics Communications. 2015. Vol. 336. P. 278-285.

7. Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite / Lakić M., Andjelković L., Šuljagić M., Vulić P., Perić M., Iskrenović P., Krstić I., Kuraica M. M., Nikolić A. S. // Optical Materials. 2019. Vol. 91. P. 279-285.

8. Надворецкий В. В., Соколов В. В. Поглощение ультразвука в магнитной жидкости с эллипсоидальными агрегатами // Магнитная гидродинамика. 1997. Т. 33. № 1. С. 36-41.

9. Parsons J. D. Sound velocity in a magnetic fluid // Journal of Physics D: Applied Physics. 1975. Vol. 8. No. 10. P. 1219-1226.

10. Gotoh K., Chung D. Y. Ultrasonic Attenuations in Magnetic Fluids // Journal of the Physical Society of Japan. 1984. Vol. 53. Iss. 8. P. 2521-2528.

11. Tarapov I. Ye., Patsegon N. F., Phedonenko A. I. Some physical and mechanical phenomena in magnetizable fluids // Journal of Magnetism and Magnetic Materials. 1983. Vol. 39. Iss. 1-2. P. 51-55.

12. Taketomi S. The Anisotropy of the Sound Attenuation in Magnetic Fluid under an External Magnetic Field // Journal of the Physical Society of Japan. 1986. Vol. 55. Iss. 3. P. 838-844.

13. Leslie F. M. Some constitutive equations for anisotropic fluids (Continuum with director and constitutive equations for anisotropic fluids, obtaining solutions for simple shear, Poiseuille and Couette flows) // Quarterly Journal of mechanics and applied mathematics. 1966. Vol. 19. Iss. 3. P. 357-370.

14. Leslie F. M. Some constitutive equations for liquid crystals // Archive for Rational Mechanics and Analysis. 1968. Vol. 28. Iss. 4. P. 265-283.

15. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation / Kúdelčík J., Bury P., Kopčanský P., Timko M. // Journal of Magnetism and Magnetic Materials. 2015. Vol. 388. P. 28-34.

16. Study of Structural Changes of Water-Based Magnetic-Fluid by Acoustic Spectroscopy / Kúdelčík J., Hardoň Љ., Bury P., Timko M., Kopčanský P. // Acta Physica Polonica A. 2017. Vol. 131. No. 4. P. 919-921.

17. Skumiel A., Łabowski M., Jуzefczak A. The measurements of anisotropy of ultrasound propagation and magnetic susceptibility in viscous ferrofluid // Ultrasonics. 2002. Vol. 40. Iss. 1-8. P. 341-344.

18. Influence of nanoparticles diameter on structural properties of magnetic fluid in magnetic field / Kúdelčík J., Bury P., Hardoň Š., Kopčanský P., Timko M. // Journal of Electrical Engineering. 2015. Vol. 66. Iss. 4. P. 231-234.

19. Parekh K., Upadhyay R. V. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid // Journal of Magnetism and Magnetic Materials. 2017. Vol. 431. P. 74-78.

20. Temperature effect on anisotropy of acoustic attenuation in magnetic fluids based on transformer oil / Kudelcik J., Bury P., Kopcansky P., Timko M. // Communications-Scientific letters of the University of Zilina. 2014. Vol. 16. No. 1. P. 33-38.

21. Magnetic properties and anisotropy of ultrasound attenuation in APG-832 magnetic liquid / Regulska P., Skumiel A., Hornowski T., Jуzefczak A. // Archives of Acoustics. 2007. Vol. 32. No. 4 (S). P. 95-100.

22. Acoustic spectroscopy of magnetic fluids based on transformer oil / Kúdelčík J., Hardoň Љ., Bury P., Kopčanský P., Timko M. // Journal of Intelligent Material Systems and Structures. 2016. Vol. 27. Iss. 7. P. 935-943.

23. Jуzefczak A., Skumiel A. Field-induced aggregates in a bilayer ferrofluid characterized by ultrasound spectroscopy // Journal of Physics: Condensed Matter. 2006. Vol. 18. No. 6. P. 1869.

24. Sokolov V. V. Comment on: “The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid” [J. Magn. Magn. Mater. 431 (2017) 74-78] // Journal of Magnetism and Magnetic Materials. 2019. Vol. 475. P. 794-795.


Review

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)