Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

A NEURAL NETWORK MODEL ADAPTATION FOR USE WITH UNCONSTRAINED HANDWRITTEN TEXT RECOGNITION SYSTEM

Abstract

The paper proposes an approach to adaptation of neural network models for
creating OCR-systems, designed to work with uncjnstrained handwriting. The approach is
based on the rejection of recognition of continuous characters and the transition to the
recognition of individual strokes, which are then going to the characters and / or words of
text. This approach can significantly reduce the dimension of neural networks used in the
OCR-systems that will enhance their productivity and quality of recognition.

About the Authors

Е. Долгова
Пермский государственный технический университет
Russian Federation


Д. Курушин
Пермский государственный технический университет
Russian Federation


References

1. Долгова, Е.В., Курушин Д.С. Компьютерные нейросетевые технологии, Пермь, ПГТУ, 2008.

2. Мисюрёв, А.В. Использование искусственных нейронных сетей для распознавания рукопечатных символов, [Электронный документ] (http://ocrai.narod.ru/hp.html). Проверено 2010.12.20.

3. Шаров, С.А. Статистика слов в русском языке. [Электронный документ] (http://www.lingvisto.org/artikoloj/ru_stat.html). Проверено 12.02.2011.

4. Jaehwa, Park, Venu Govindaraju, and Sargur N. Srihari. Efficient word segmentation driven by unconstrained handwritten phrase recognition. In Proceedings of International Conference on Document Analysis and Recognition, pages 605-608, 1999.

5. Selinger, P. Potrace: a polygon-based tracing algorithm языке. [Электронный документ] (http://potrace.sourceforge.net/potrace.pdf). Проверено 12.02.2011.


Review

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)