Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

INVESTIGATION OF THE STRUCTURE OF LARGE AMPLITUDE INTERNAL SOLITARY WAVES IN A THREE-LAYER FLUID

Abstract

The structure of physical fields (density anomaly, horizontal and vertical velocity)
of localized stationary full-nonlinear disturbances in the symmetric three-layer fluid
is examined. Wavelength-amplitude and phase speed-amplitude relationship depending
on vertical coordinate are analyzed for these waves. The comparison with weaklynonlinear
theory is also carried out.

About the Authors

Е. Рувинская
Нижегородский государственный технический университет им. Р.Е. Алексеева
Russian Federation


О. Куркина
Нижегородский государственный технический университет им. Р.Е. Алексеева; Национальный исследовательский университет "Высшая школа экономики"
Russian Federation


А. Куркин
Нижегородский государственный технический университет им. Р.Е. Алексеева
Russian Federation


References

1. Краусс, В. Внутренние волны. Л.: Гидрометеоиздат, 1968. 272 c.

2. Морозов, Е.Г. Океанские внутренние волны. М.: Наука, 1985. 151 с.

3. Сабинин, К.Д., Коняев К.В. Волны внутри океана. С-П.: Гидрометеоиздат, 1992. 272c.

4. Mak Kinnan, J.A., Gregg M.C. Mixing on the late-summer new England shelf-solibores, shear and stratification. Preprint. AGU, 1999. - 4. р.19

5. Bogucki, D., Dikky T., Redekopp L.G. Sediment resuspension and mixing by resonantly generated solitary waves // J. Phys. Oceanogr, 1997.- 7. p.1181 - 1196

6. Maltseva, J.L. Limiting forms of internal solitary waves //J. Offshore Mech. 2003. - 125 № 1. p.76

7. Maltseva, J.L. On asymptotic properties of internal solitary waves in two-layer fluids // Computational technologies. 2000. - 5 № 1. p. 85-92

8. Власенко, В.И., Брандт П., Рубино А. Исследование структуры уединенных внутренних волн большой амплитуды // Морской гидрофиз. журнал, 2000. - 5. с. 15- 31

9. Makarenko, N.I., J. L. Maltseva, and A. Yu. Kazakov Conjugate flows and amplitude bounds for internal solitary waves // Nonlin. Processes Geophys. , 2009. - 16. p. 169-178

10. Duda, T.F., Lynch, J.F., Irish, J.D., Beardsley, J.D., Ramp, S.R., et al. Internal tide and nonlinear wave behavior in the continental slope in the northern South China Sea // IEEE J. Ocean Eng., 2004.- 29. p.1105-1131

11. Helfrich, K.R. and W.K. Melville Long Nonlinear InternalWaves // Annu. Rev. Fluid. Mech., 2006. -38. p. 395-425.

12. Aitsam, A., Hansen H.P., Elken J., Kahru M., Laanemets J., Pa juste M., Pavelson J.,Talpsepp L. Physical and chemical variability of the Baltic Sea: a joint experiment in the Gotland Basin // Cont. Shelf Res., 1984. -3. p. 291-310

13. Soomere, T. Coupling coefficients and kinetic equation for Rossby waves in multi-layer ocean // Nonlinear Processes in Geophysics, 2003. - 10. p. 385-396

14. Rus°as, P.-O. and Grue J. Solitary waves and conjugate flows in a three-layer fluid // Eur. J. Mech. B/Fluids, 2002. - 21. p. 185-206

15. Lamb, K.G. Extreme internal solitary waves in the ocean:Theoretical considerations // Preprint University of Waterloo. - 2006. p. 109-117.

16. Gear, J.A., Grimshaw R. A second order theory for solitary waves in shallow fluids. // Phys. Fluids, 1983. - 26. p. 14 - 29.

17. Grimshaw, R., Pelinovsky E., Talipova T. The modified Korteweg - de Vries equation in the theory of large-amplitude internal waves. // Nonlinear Processes in Geophysics, 1997. - 4, No. 4. p. 237 - 350.

18. Канарская, Ю.В. Негидростатическая модель стратифицированных течений со свободной поверхностью. Диссертация на соискание ученой степени кандидата физико-математических наук, 01.02.05 - механика жидкости, газа и плазмы. Киев, Украина, 2004. 126с.

19. Grue, J., Friis A., Palm E., Rusas P.-O. A method for computing unsteady fully nonlinear interfacial waves // J. Fluid Mech., 1997. - 351. p. 223.

20. Lamb, K. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge // J. Geoph. Res., 1994. - 99, C1. p. 843-864.

21. Vlasenko, V., Stashchuk N., Hutter K., Sabinin K. Nonlinear internal waves forced by tides near the critical latitude. // Deep-Sea Research I, 2003. - 50. p. 317-338

22. Brown, D.J., Christie D.R. Fully Nonlinear Solitary Waves in Continuously Stratified Incompressible Boussinesq Fluids // Phys.Fluids, 1998. -10. p. 2569-2586

23. Lamb, K. Numerical simulations of stratified inviscid flow over a smooth obstacle // J. Fluid Mech, 1994. - 260. p. 1-22.

24. Lamb, K., Yan L. The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. // J. Phys. Oceanography. - 1996. -26. p. 2712-2734.

25. Koop, C.G., Butler G. An investigation of internal solitary waves in a two-fluid system// J. Fluid Mech. - 1981. - 112 .p. 225-251


Review

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)