Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ASYMPTOTICS OF THE SOLUTION OF ONE SINGULARLY PERTURBED HYPERBOLIC EQUATION

Abstract

The singularly perturbed quasilinear hyperbolic equations are considered. The
existence of the solutions of moving front type, having contrast structure is proved. The
asymptotic expansion of the moving interior layer solution is built based on the boundary
layer function method. The equation for moving front velocity was obtained. Important
case of quasi-discrete nonlinearities was considered.

About the Authors

М. Петрова
Национальный исследовательский ядерный университет «МИФИ»
Russian Federation


В. Трифоненков
Национальный исследовательский ядерный университет «МИФИ»
Russian Federation


References

1. Keener, J.P. Homogenization and propogation in the bistable equation. // Physica D, 136: 1-17, 2000

2. Keizer, J., Smith G.D., Ponce Dawson S., Pearson J.E. Saltatory propagation of Ca2+ waves by Ca2+ sparks. //Biophys. J., 75: 595-600, 1998.

3. Васильева, А.Б., Петрова М.А. Контрастные структуры в сингулярно возмущенных уравнениях гиперболического типа. // Труды вторых математических чтений МГСУ, 1994, Изд-во «Союз», C. 26-29.

4. Васильева, А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. // М.: Высш. школа, 1990.


Review

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)