Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

FUNCTIONS OF TWO VARIABLES OF FINITE -VARIATION AND SUPERPOSITION OPERATORS

Abstract

Our paper is devoted to the description of the superposition operators which
map on function spaces of finite variation. We present the results which develop and generalize
the recent researches by J. Matkowski, J. Mis, D. Waterman and V.V. Chistyakov:
we introduce the notion of a total (two-dimensional) ƒ -variation for functions of two
real variables and show that the Waterman class of these functions with finite total variation
is a Banach space. Also, we give the description of the Lipschitzian superposition
(Nemytskii) operator mapping the Wateman class into itself.

About the Authors

Е. Громов
Национальный исследовательский университет - Высшая школа экономики в Нижнем Новгороде
Russian Federation


О. Солычева
Национальный исследовательский университет - Высшая школа экономики в Нижнем Новгороде
Russian Federation


В. Тютин
Национальный исследовательский университет - Высшая школа экономики в Нижнем Новгороде
Russian Federation


References

1. Солычева, О.М. Липшицевы операторы суперпозиции на метрических полугруппах и абстрактных выпуклых конусах отображений конечной ? -вариации // Сиб. матем. журн. 2006. Т. 47. №3. С. 649-664.

2. Chistyakov, V.V. Superposition operators in the algebra of functions of two variables with finite total variation // Monatsh. Math. 2002. V. 137. №2. P. 99-114.

3. Chistyakov, V.V., Solycheva O.M. Lipschitzian Operators of Substitution in the Algebra ƒBV // J. of Diff. Equations and Appl. 2003. V. 9. №3/4. P. 407-416.

4. Dyachenko, M.I., Waterman D. Convergence of double Fourier series and W-classes // Trans. Amer. Math. Soc. 2004. V. 357. №1. P. 397-407.

5. Hildebrandt, T.H. Introduction to the theory of integration. New York and London: Academic press, 1963. 361 p.

6. Matkowski, J., Miś J. On a characterization of Lipschitzian operators of substitution in the BV[a,b] // Math. Nachr. 1984. V. 117. P. 155-159.

7. Waterman, D. On ƒ -bounded variation // Studia Math. 1976. V. 57. №1. P. 33-45.


Review

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)