Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Dirichlet problem for the Laplace equation in a piecewise homogeneous multidimensional layer with fourth-kind conjugation conditions

https://doi.org/10.18384/2310-7251-2022-3-59-87-99

Abstract

Aim. The purpose is to find exact solutions of the Dirichlet problem for the Laplace equation in a piecewise homogeneous multidimensional layer with fourth-kind conjugation conditions.

Methodology. We consider the Dirichlet problem in a piecewise homogeneous layer in a space of arbitrary dimension. Dirichlet conditions are set on the outer boundary hyperplanes, and conjugation conditions of the fourth kind are set on the inner hyperplane dividing the layer into two layers of equal thickness. The functions defined on the boundary are assumed to be generalized functions of slow growth; in particular, they can be polynomials.

Results. Exact solutions of the Dirichlet problem for the Laplace equation in a piecewise homogeneous multidimensional layer with conjugation conditions of the fourth kind are obtained, which are written as convolutions of rapidly decreasing, infinitely differentiable functions (kernels) with boundary functions, which are considered to be generalized functions of slow growth. If the boundary functions are ordinary functions of slow growth, then the solutions are written by integral formulae. In particular, if the boundary functions are polynomials, then the solutions are also polynomials.

Research implications. We have obtained exact solutions of the Dirichlet problem for the Laplace equation in a piecewise homogeneous multidimensional layer with conjugation conditions of the fourth kind.

About the Authors

O. D. Algazin
Bauman Moscow State Technical University
Russian Federation

 Oleg D. Algazin – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Computational Mathematics and Mathematical Physics

ul. 2-ya Baumanskaya 5, stroenie 1, Moscow 105005 



A. V. Kopaev
Bauman Moscow State Technical University
Russian Federation

 Anatoliy V. Kopaev – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Higher Mathematics

ul. 2-ya Baumanskaya 5, stroenie 1, Moscow 105005 



References

1. Lykov V. A. Teoriya teploprovodnosti [Theory of Heat Conduction]. Moscow, Vysshaya shkola Publ., 1967. 600 p.

2. Radygin V. M., Golubeva O. V. Primenenie funktsii kompleksnogo peremennogo v zadachakh fiziki i tekhniki [Application of functions of a complex variable in problems of physics and technology]. Moscow, Vysshaya shkola Publ., 1983. 160 p.

3. Kopayev A. V. [Functional equation method in problems of flow through a stratified porous medium]. In: Izvestiya RAN. Mekhanika zhidkosti i gaza [Fluid Dynamics], 1997, no. 5, pp. 81–89.

4. Vladimirov V. S. Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics]. Moscow, Nauka Publ., 1979. 320 p.

5. Algazin O. D., Kopayev A. V. [Solution of the Dirichlet Problem for the Poisson's Equation in a Multidimensional Infinite Layer]. In: Matematika i matematicheskoe modelirovanie (setevoe izdanie MGTU im. N. E. Baumana) [Mathematics and Mathematical Modeling], 2015, no. 4, pp. 41–53. Available at: https://www.mathmelpub.ru/jour/article/view/24/25 (accessed: 20.05.2022). DOI: 10.7463/mathm.0415.0812943.

6. Algazin O. D. [Polynomial Solutions of the Boundary Value Problems for the Poisson Equation in a Layer]. In: Matematika i matematicheskoe modelirovanie (setevoe izdaniye MGTU im. N. E. Baumana) [Mathematics and Mathematical Modeling], 2017. no. 6, pp. 1–18. Available at: https://www.mathmelpub.ru/jour/article/view/82/88 (accessed: 20.05.2022). DOI: 10.24108/mathm.0517.0000082.

7. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady. T. 2 Spetsial'nye funktsii [Integrals and Series. Vol. 2 Special functions]. Moscow, Fizmatlit Publ., 2003.664 p.


Review

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)