Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Use of electrokinetic phenomena in an optofluid cell with polymer substrates

https://doi.org/10.18384/2310-7251-2022-3-59-74-86

Abstract

Aim. We describe the use of electrokinetic phenomena in liquid crystals to produce a new class of microfluidics devices, i.e. optofluidics designed to control electromagnetic radiation, including the THz frequency range.

Methodology. Use is made of an optical method for studying changes in the orientational structure in LC layers caused by a shear flow generated by an electroosmotic pump. The LC behavior in an experimental cell containing an electroosmotic pump and flat layers of a nematic liquid crystal is simulated.

Results. We have obtained experimental dependences of the intensity of polarized radiation passing through flat LC layers on the control voltage applied to the electroosmotic pump. Results of calculations of hydrodynamic and mechano-optical characteristics of an experimental LC cell are presented.

Research implications. A new idea has been implemented, which consists in using a shear flow induced by an electroosmotic pump to control optical radiation. The developed design of the LC cell and the obtained experimental results can be used to develop new devices for controlling electromagnetic radiation, including the THz frequency range.

About the Authors

A. Sh. Saidgaziev
MIREA – Russian Technological University
Russian Federation

  Saidgaziev Aivr Shavkatovich –Research Assistant, Problematic Laboratory of Molecular Acoustics 

prosp. Vernadskogo 78, Moscow 119454 



S. V. Pasechnik
MIREA – Russian Technological University
Russian Federation

  Pasechnik Sergey Veniaminovich – Dr. Sci. (Phys.-Math.), Laboratory Head, Problematic Laboratory of Molecular Acoustics

 
prosp. Vernadskogo 78, Moscow 119454 



D. V. Shmeleva
MIREA – Russian Technological University
Russian Federation

  Shmeleva Dina Vladimirovna – Cand. Sci. (Phys.-Math.), Senior Researcher, Problematic Laboratory of Molecular Acoustics 

prosp. Vernadskogo 78, Moscow 119454 



S. S. Kharlamov
MIREA – Russian Technological University
Russian Federation

 Kharlamov Semyon Sergeevich – Research Assistant, Problematic Laboratory of Molecular Acoustics

prosp. Vernadskogo 78, Moscow 119454 



A. A. Vasilyeva
MIREA – Russian Technological University
Russian Federation

  Vasilieva Anastasia Alekseevna – Engineer, Problematic Laboratory of Molecular Acoustics 

prosp. Vernadskogo 78, Moscow 119454 



References

1. Fedulova E. V., Nazarov M. M., Angeluts A. A., Kitai M. S., Sokolov V. I., Shkurinov A. P. Studying of dielectric properties of polymers in the terahertz frequency range. In: Proceedings of SPIE, 2012, vol. 8337. Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, id. 83370I. DOI: 10.1117/12.923855.

2. Mavrona E., Chodorow U., Barnes M. E., Parka J., Palka N., Saitzek S., Blach J.-F., Apostolopoulos V., Kaczmarek M. Refractive indices and birefringence of hybrid liquid crystal - nanoparticles composite materials in the terahertz region. In: AIP Advances, 2015, vol. 5, id. 077143. DOI: 10.1063/1.4927392.

3. Pasechnik S. V., Chigrinov V. G., Shmeliova D. V. Liquid Crystals: Viscous and Elastic Properties in Theory and Applications. Weinheim, Wiley-VCH Verlag GmbH, 2009. 436 p.

4. Pasechnik S. V., Shmeliova D. V. Terafluidic devices: Perspectives and Problems. In: IEEE 40th International Conference on Infrared, Millimeter, and Terahertz Waves, 2015, p. 1–2. DOI: 10.1109/IRMMW-THz.2015.7327669.

5. Pasechnik S. V., Shmeliova D. V., Kharlamov S. S., Semina O. A., Saidgaziev A. Sh., Chigrinov V. G. Electrorheology of Liquid Crystals. In: Zhidkie kristally i ikh prakticheskoe ispol'zovanie [Liquid Crystals and their Application], 2018, vol. 18, no. 3, pp. 89–93. DOI: 10.18083/LCAppl.2018.3.89.

6. Selvaraj P., Subramani K., Srinivasan B., Hsu C.-J., Huang C.-Y. Electro-optical effects of organic N-benzyl-2-methyl-4-nitroaniline dispersion in nematic liquid crystals. In: Scientific Reports, 2020, vol. 10 (1), id. 14273. DOI: 10.1038/s41598-020-71306-1.

7. Shmeliova D. V., Saidgaziev A. Sh., Kharlamov S. S., Visotsky A. S., Safonov M. A., Konovalova A. A., Pasechnik S. V. Liquid crystal optofluidic device based on electrokinetic phenomena in porous polymer films. In: Zhidkie kristally i ikh prakticheskoe ispol'zovanie [Liquid Crystals and their Application], 2020, vol. 20, no 3, pp. 72–79. DOI: 10.18083/LCAppl.2020.3.72.

8. Shmeliova D. V., Pasechnik S. V., Kharlamov S. S., Saidgaziev A. Sh., Podolsky V. A. Electrokinetic Phenomena in Homeotropic Layers of Nematic Liquid Crystal. In: Zhidkie kristally i ikh prakticheskoe ispol'zovanie [Liquid Crystals and their Application], 2021, vol. 21, no. 3, pp. 39–44. DOI: 10.18083/LCAppl.2021.3.39.

9. Vasdekis A. E., Cuennet J. G., De Sio L., Psaltis D. Optofluidic modulator based on peristaltic nematogen microflows. In: Nature Photonics, 2011, vol. 5, iss. 4, pp. 234–238. DOI: 10.1038/NPHOT.2011.18.


Review

Views: 498


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)