Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Interaction of an electromagnetic H-wave with a semiconductor nanolayer located between two dielectric median

https://doi.org/10.18384/2310-7251-2022-3-39-57

Abstract

Aim. The purpose of the paper is to theoretically simulate optical characteristics of a semiconductor nanolayer sandwiched between two dielectric media.

Methodology. The quantum theory of transport phenomena is used, which consists in finding the density operator matrix elements by solving the Liouville equation. The surface scattering of charge carriers is taken into account through the Soffer boundary conditions.

Results. Analytical expressions are derived for the optical coefficients as functions of the nanolayer thickness, the electromagnetic wave frequency and incidence angle, the media dielectric constants, the chemical potential, and the surface roughness parameters. The dependences of optical coefficients on the above parameters are analyzed for the limiting cases of a degenerate and nondegenerate electron gas. It is shown that for total internal reflection, the oscillation amplitudes of the dependences of reflection and absorption coefficients on the thickness become comparable.

Research implications. The obtained results can be used for producing layered nanostructures and nanocoatings with specified optical characteristics.

About the Authors

O. V. Savenko
P.G. Demidov Yaroslavl State University
Russian Federation

  Oleg Vladislavovich Savenko – Cand. Sci. (Phys.-Math.), Researcher, The Facilities Sharing Centre “Diagnostics of Micro- and Nanostructures” 

ul. Sovetskaya 14, Yaroslavl 150000 



I. A. Kuznetsova
P.G. Demidov Yaroslavl State University
Russian Federation

  Irina Alexandrovna Kuznetsova – Dr. Sci. (Phys.-Math.), Departmental Head, Department of Microelectronics and General Physics 

ul. Sovetskaya 14, Yaroslavl 150000 



References

1. Blum K. Density matrix theory and applications. Berlin, Springer, 2012. 346 p.

2. Gadomskii O. N., Shchukarev I. A., Pereskokov Ye. A. [“Nanocomposite antireflection coatings in the form of thick films with a quasi-zero refractive index for solar cells]. In: Pis'ma v zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 2016, vol. 42, no. 16, pp. 79–86.

3. Kuznetsova I. A., Romanov D. N., Yushkanov A. A. [Interaction of an electromagnetic hwave with a thin metal film on a dielectric substrate in the case of an anisotropic metal Fermi surface]. In: Optika i spektroskopiya [Optics and Spectroscopy], 2019, vol. 127, no. 8, pp. 306–312. DOI: 10.21883/OS.2019.08.48047.78-19.

4. Kuznetsova I. A., Savenko O. V., Romanov D. N. [Quantum transport in a semiconductor nanolayer taking into account surface charge carrier scattering]. In: Fizika i tekhnika poluprovodnikov [Semiconductors], 2021, vol. 55, no. 9, pp. 789–797. DOI: 10.21883/FTP.2021.09.51296.26.

5. Landau L. D., Lifshitz E. M. Teoreticheskaya fizika: v 10-ti tomakh. T. VIII. Elektrodinamika sploshnykh sred [Theoretical physics: in 10 volumes. T. VIII. Electrodynamics of continuous media]. Moscow, FIZMATLIT Publ., 2016. 656 p.

6. Markov L. K., Pavlyuchenko A. S., Smirnova I. P. [Technique for the formation of antireflection coatings based on ITO films]. In: Fizika i tekhnika poluprovodnikov [Semiconductors], 2019, vol. 53, no. 2, pp. 181–189. DOI: 10.21883/FTP.2019.02.47096.8940.

7. Starostenko V. V., Orlenson V. B., Mazinov A. S., Akhramovich L. N. [Quantum-mechanical approach description of the microwave electromagnetic radiation interaction with thin conductive films]. In: Pis'ma v zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 2020, vol. 46, no. 9, pp. 43–46. DOI: 10.21883/PJTF.2020.09.49373.18242.

8. Tavger B. L., Demikhovskiy V. Ya. [Quantum size effects in semiconducting and semimetallic films]. In: Uspekhi fizicheskikh nauk [Soviet Physics-Uspekhi], 1968, vol. 96, iss. 1, pp. 61–86. DOI: 10.3367/UFNr.0096.196809d.0061.

9. Utkin A. I., Yushkanov A. A. [The effect of reflectance coefficients on the interaction of an h-wave with a thin metal film]. In: Optika i spektroskopiya [Optics and Spectroscopy], 2014, vol. 117, no. 4, pp. 650–653. DOI: 10.7868/S003040341409027X.

10. Utkin A. I., Yushkanov A. A. [The effect of specular reflectances on the interaction of an electromagnetic e-wave with a thin metal film placed between two dielectric media]. In: Optika i spektroskopiya [Optics and Spectroscopy], 2018, vol. 124, no. 2, pp. 250–254. DOI: 10.21883/OS.2018.02.45532.190-17.

11. Ando T., Fowler A. B., Stern F. Electronic Properties of Two-Dimensional Systems. In: Review of Modern Physics, 1982, vol. 54, iss. 2, pp. 437–672. DOI: 10.1103/RevModPhys.54.437.

12. Bihun R. I., Stasyuk Z. V., Balitskii O. A. Crossover from quantum to classical electron transport in ultrathin metal films. In: Physica B: Condensed Matter, 2019, vol. 487, pp. 73–77. DOI: 10.1016/j.physb.2016.02.003.

13. De Clercq M., Moors K., Sankaran K., Pourtois G., Dutta Sh., Adelmann Ch., Magnus W., Sorée B. Resistivity scaling model for metals with conduction band anisotropy. In: Physical Review Materials, 2018, vol. 2, iss. 3, p. 033801. DOI: 10.1103/PhysRevMaterials.2.033801.

14. Ketenoglu D., Ünal B. Green function solution of the Boltzmann transport equation for semiconducting thin film with rough boundaries. In: Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, iss. 15, pp. 3828–3832.

15. Kuznetsova I. A., Romanov D. N., Savenko O. V. Electrical conductivity of a thin film in the case of an arbitrarily oriented ellipsoidal isoenergetic surface of a conductor. In: Physica Scripta, 2021, vol. 96, iss. 4, Id. 045803. DOI: 10.1088/1402-4896/abde0c.

16. Kuznetsova I. A., Savenko O. V., Romanov D. N. Influence of quantum electron transport and surface scattering of charge carriers on the conductivity of nanolayer. In: Physics Letters A, 2022, vol. 427, p. 127933. DOI: 10.1016/j.physleta.2022.127933.

17. Lin Zh., Huang B., He G., Yang W., He Q., Li L. High efficiency enhancement of multi-crystalline silicon solar cells with syringe-shaped ZnO nanorod antireflection layers. In: Thin Solid Films, 2018, vol. 653, pp. 151–157. DOI: 10.1016/j.tsf.2018.03.023.

18. Lutskii V. N. Quantum size effect present state and perspectives of experimental investigations // Physica Status Solidi (a). 1970. Vol. 1. P. 199–220. DOI: 10.1002/pssa.19700010202.

19. Meyerovich A. E., Ponomarev I. V. Surface roughness and size effects in quantized films // Physical Review B. 2002. Vol. 65. Iss. 15. P. 155413. DOI: 10.1103/PhysRevB.65.155413.

20. Munoz R. C., Arenas C. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces // Applied Physics Review. 2017. Vol. 4. P. 011102. DOI: 10.1063/1.4974032.

21. Sheng L., Xing D.Y., Wang Z. D. Transport theory in metallic films: Crossover from the classical to the quantum regime // Physical Review B. 1995. Vol. 51. Iss. 11. P. 7325. DOI: 10.1103/PhysRevB.51.7325.

22. Electrical resistivity of atomically smooth single-crystal Cu films / Shinde P. P., Shashishekar P. T., Adiga P., Konar A., Pandian Sh., Mayya K. S., Shin H.-J., Cho Y., Park S. // Physical Review B. 2020. Vol. 102. Iss. 16. P. 165102. DOI: 10.1103/PhysRevB.102.165102.

23. Soffer S. B. Statistical Model for the Size Effect in Electrical Conduction // Journal of Applied Physics. 1967. Vol. 38. Iss. 4. P. 1710. DOI: 10.1063/1.1709746.

24. Villagómez R., Xiao M. Thickness dependence of infrared reflectance of ultrathin metallic films: Influence of quantum confinement // Optik. 2016. Vol. 127. Iss. 15. P. 5920. DOI: 10.1016/j.ijleo.2016.04.048.

25. Utkin A. I., Yushkanov A. A. Interaction of electromagnetic H-wave with the thin metal film is located on the dielectric substrate // Фізика і хімія твердого тіла (Physics and chemistry of solid state). 2015. Т. 16. № 2. С. 253–256. DOI: 10.15330/pcss.16.2.253-256.


Review

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)